Wavelet Toolbox ${ }^{\text {TM }}$

Reference

R2013a

Michel Misiti
Yves Misiti
Georges Oppenheim Jean-Michel Poggi

MATLAB

How to Contact MathWorks

www. mathworks.com
comp.soft-sys.matlab
Web
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com
Product enhancement suggestions
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Wavelet Toolbox ${ }^{\text {TM }}$ Reference

© COPYRIGHT 1997-2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

March 1997
September 2000
First printing
Second printing
June $2001 \quad$ Online only
July $2002 \quad$ Online only
June $2004 \quad$ Online only
July 2004
October 2004
March 2005
June 2005
September 2005
March 2006 Third printing Online only Online only Fourth printing Online only

September 2006
March 2007
October 2007
September 2007
March 2008 Online only Online only Online only Fifth printing

Online only
October 2008
March 2009 Online only

September 2009
March 2010
September 2010
April 2011
September 2011 March 2012
September 2012
March 2013

Online only Online only

New for Version 1.0
Revised for Version 2.0 (Release 12)
Revised for Version 2.1 (Release 12.1)
Revised for Version 2.2 (Release 13)
Revised for Version 3.0 (Release 14)
Revised for Version 3.0
Revised for Version 3.0.1 (Release 14SP1)
Revised for Version 3.0.2 (Release 14SP2)
Minor revision for Version 3.0.2
Minor revision for Version 3.0.3 (Release R14SP3)
Minor revision for Version 3.0.4 (Release 2006a)
Revised for Version 3.1 (Release 2006b)
Revised for Version 4.0 (Release 2007a)
Revised for Version 4.1
Revised for Version 4.1 (Release 2007b)
Revised for Version 4.2 (Release 2008a)
Revised for Version 4.3 (Release 2008b)
Revised for Version 4.4 (Release 2009a)
Minor revision for Version 4.4.1 (Release 2009b)
Revised for Version 4.5 (Release 2010a)
Revised for Version 4.6 (Release 2010b)
Revised for Version 4.7 (Release 2011a)
Revised for Version 4.8 (Release 2011b)
Revised for Version 4.9 (Release 2012a)
Revised for Version 4.10 (Release 2012b)
Revised for Version 4.11 (Release 2013a)

Function Reference

1

Function Reference

addlift
allnodes
appcoef
appcoef2
bestlevt
besttree
biorfilt
biorwavf
bswfun
centfrq
cfs2wpt
cgauwavf
chgwdeccfs
cmddenoise
cmorwavf
coifwavf
conofinf
cwt
cwtft
cwtftinfo
cwtext
dbaux
dbwavf
ddencmp
depo2ind
detcoef
detcoef2
disp
displs
drawtree
dtree
dwt
dwt2
dwt3
dwtmode
dyaddown
dyadup
entrupd
fbspwavf
filt2ls
gauswavf
get
icwtft
icwtlin
idwt
idwt2
idwt3
ilwt
ilwt2
ind2depo
indwt
indwt2
intwave
isnode
istnode
iswt
iswt2
laurmat
laurpoly
leaves
liftfilt
liftwave
localmax
ls2filt
lsinfo

```
lwt
lwt2
lwtcoef
lwtcoef2
mdwtcluster
mdwtdec
mdwtrec
measerr
mexihat
meyer
meyeraux
morlet
mswemp
mswempscr
mswemptp
mswden
ndwt
ndwt2
mswthresh
nodeasc
nodedesc
nodejoin
nodepar
nodesplt
noleaves
ntnode
ntree
orthfilt
otnodes
pat2cwav
plot
qmf
rbiowavf
read
readtree
scal2frq
set
```

shanwavf swt
swt2
symaux
symwavf
thselect
tnodes
treedpth
treeord
upcoef
upcoef2
upwlev
upwlev2
wave 2 lp
wavedec
wavedec 2
wavedec3
wavedemo
wavefun
wavefun2
waveinfo
waveletfamilies
wavemenu
wavemngr
wavenames
waverec
waverec2
waverec3
wavsupport
wbmpen
wcodemat
wcoher
wcompress
wdcbm
wdcbm 2
wdecenergy
wden
wdencmp
wenergy
wenergy2
wentropy
wextend
wfbm
wfbmesti
wfilters
wfusimg
wfusmat
wkeep
wmaxlev
wmpalg
wmpdictionary
wmspca
wmulden
wnoise
wnoisest
wp2wtree
wpbmpen
wpcoef
wpcutree
wpdec
wpdec2
wpdencmp
wpfun
wpjoin
wprcoef
wprec
wprec2
wpspectrum
wpsplt
wpthcoef
wptree
wpviewcf
wrcoef
wrcoef2
wrev
write
wscalogram
wtbo
wtbxmngr
wthcoef
wthcoef2
wthresh
wthrmngr
wtreemgr
wvarchg

Purpose

Syntax

Description

Add lifting steps to lifting scheme

```
LSN = addlift(LS,ELS)
LSN = addlift(LS,ELS,'begin')
LSN = addlift(LS,ELS,'end')
addfilt(LS,ELS)
```

LSN = addlift(LS,ELS) returns the new lifting scheme LSN obtained by appending the elementary lifting step ELS to the lifting scheme $L S$.
LSN = addlift(LS,ELS,'begin') prepends the specified elementary lifting step.
$E L S$ is either a cell array (see lsinfo)
\{TYPEVAL, COEFS, MAX_DEG\}
or a structure (see liftfilt)

```
struct('type',TYPEVAL,'value',LPVAL)
```

with
LPVAL = laurpoly (COEFS, MAX_DEG)
$L S N=$ addlift(LS ,ELS,'end') is equivalent to addfilt($L S, E L S$).
If $E L S$ is a sequence of elementary lifting steps, stored in a cell array or an array of structures, then each of the elementary lifting steps is added to LS.

For more information about lifting schemes, see lsinfo.

Examples

```
% Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');
% Visualize the obtained lifting scheme.
displs(lshaar);
lshaar = {...
```


addlift

```
'd' [ -1.00000000] [0]
'p' [ 0.50000000] [0]
[ 1.41421356] [ 0.70710678] []
};
% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
displs(lsnew);
lsnew = {...
'd' [ -1.00000000] [0]
'p' [ 0.50000000] [0]
'p' [ -0.12500000 0.12500000] [0]
[ 1.41421356] [ 0.70710678] []
};
```

See Also liftfilt

Purpose
 Tree nodes

Syntax
$\mathrm{N}=$ allnodes(T)
$\mathrm{N}=$ allnodes(T, 'deppos')

Examples
\% Create initial tree.
ord = 2;
$\mathrm{t}=$ ntree (ord,3); \quad \% Binary tree of depth 3.
t = nodejoin(t,5);
$\mathrm{t}=$ nodejoin(t,4);
plot(t)

[^0]
\% List t nodes (index).
aln_ind = allnodes(t)
aln_ind =
0
1
2
3
4
5
6
7
8
13
14
\% List t nodes (Depth_Position).
aln_depo = allnodes(t,'deppos')
aln_depo =
00
10
$1 \quad 1$
20
21
$2 \quad 2$
23
30

allnodes

Purpose
1-D approximation coefficients
Syntax

Description

Examples

```
% The current extension mode is zero-padding (see dwtmode).
% Load a one-dimensional signal.
load leleccum; s = leleccum(1:3920);
% Perform decomposition at level 3 of s using db1.
[c,l] = wavedec(s,3,'db1');
% Extract approximation coefficients at level 3, from the
% wavelet decomposition structure [c,l].
```

```
ca3 = appcoef(c,l,'db1',3);
% Using some plotting commands,
% the following figure is generated.
```


Algorithms

The input vectors C and L contain all the information about the signal decomposition.

Let NMAX = length(L)-2; then C = [A(NMAX) D(NMAX) ... D(1)] where A and the D are vectors.

If $N=$ NMAX, then a simple extraction is done; otherwise, appcoef computes iteratively the approximation coefficients using the inverse wavelet transform.

See Also detcoef | wavedec

Purpose
2-D approximation coefficients
Syntax

Tips

Examples
appcoef2 is a two-dimensional wavelet analysis function. It computes the approximation coefficients of a two-dimensional signal. The syntaxes allow you to give the wavelet name or the filters as inputs.

A = appcoef2(C,S,'wname',N) computes the approximation coefficients at level N using the wavelet decomposition structure $[C, S]$ (see wavedec2 for more information).
'wname'is a string containing the wavelet name. Level N must be an integer such that $0 \leq N \leq \operatorname{size}(S, 1)-2$.
A = appcoef2 (C,S,'wname') extracts the approximation coefficients at the last level: $\operatorname{size}(\mathrm{S}, 1)-2$.

A = appcoef2(C,S,Lo_R,Hi_R) or A = appcoef2(C,S,Lo_R,Hi_R,N), Lo_R is the reconstruction low-pass filter and $H i _R$ is the reconstruction high-pass filter (see wfilters for more information).

If C and S are obtained from an indexed image analysis or a truecolor image analysis, A is an m-by-n matrix or an m-by-n-by-3 array, respectively.

For more information on image formats, see the image and imfinfo reference pages.
\% The current extension mode is zero-padding (see dwtmode).
\% Load original image.
load woman;
\% X contains the loaded image.

```
% Perform decomposition at level 2
% of X using db1.
[c,s] = wavedec2(X,2,'db1');
sizex = size(X)
sizex =
    256 256
sizec = size(c)
sizec =
            1 65536
    val_s = s
val_s =
    64 64
    64 64
    128 128
    256 256
% Extract approximation coefficients
% at level 2.
ca2 = appcoef2(c,s,'db1',2);
sizeca2 = size(ca2)
sizeca2 =
    64 64
% Compute approximation coefficients
% at level 1.
ca1 = appcoef2(c,s,'db1',1);
sizeca1 = size(ca1)
sizeca1 =
    128 128
```

Algorithms The algorithm is built on the same principle as appcoef.

See Also detcoef2 | wavedec2

bestlevt

Purpose Best level tree wavelet packet analysis

```
Syntax
T = bestlevt(T)
[T,E] = bestlevt(T)
```

Description

Examples

```
% The current extension mode is zero-padding (see dwtmode).
% Load signal.
load noisdopp;
x = noisdopp;
% Decompose x at depth 3 with db1 wavelet, using default
% entropy (shannon).
wpt = wpdec(x,3,'db1');
% Decompose the packet [3 0].
wpt = wpsplt(wpt,[3 0]);
% Plot wavelet packet tree wpt.
plot(wpt)
```


bestlevt

\% Compute best level tree.
blt = bestlevt(wpt);
\% Plot best level tree blt. plot(blt)

Algorithms

See Also

See besttree algorithm section. The only difference is that the optimal tree is searched among the complete subtrees of the initial tree, instead of among all the binary subtrees.
besttree | wenergy | wpdec | wpdec2

Purpose

Best tree wavelet packet analysis

Syntax

T = besttree(T)
[T,E] = besttree(T)
[T,E,N] = besttree(T)

```
Examples \% Set dwtmode to periodization
dwtmode('per');
\% Load signal.
```


besttree

```
load noisdopp;
% Decompose noisdopp to level 4 with sym4 wavelet using default
% entropy (shannon).
wpt = wpdec(noisdopp,4,'sym4');
plot(wpt);
```


[^1]

Algorithms

References

See Also
How To

Consider the one-dimensional case. Starting with the root node, the best tree is calculated using the following scheme. A node N is split into two nodes N1 and N2 if and only if the sum of the entropy of N1 and N2 is lower than the entropy of N . This is a local criterion based only on the information available at the node N .

Several entropy type criteria can be used (see wenergy for more information). If the entropy function is an additive function along the wavelet packet coefficients, this algorithm leads to the best tree.

Starting from an initial tree T and using the merging side of this algorithm, we obtain the best tree among all the binary subtrees of T.

Coifman, R.R.; M.V. Wickerhauser (1992), "Entropy-based algorithms for best basis selection," IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713-718.

Mallat, S. (1998), A wavelet tour of signal processing, Academic Press.
bestlevt | wenergy | wpcoef | wpdec | wpdec2 | wprcoef

- "Reconstructing a Signal Approximation from a Node"

biorfilt

Purpose Biorthogonal wavelet filter set

```
Syntax
[Lo_D,Hi_D,Lo_R,Hi_R] = biorfilt(DF,RF)
[Lo_D1,Hi_D1,Lo_R1,Hi_R1,Lo_D2,Hi_D2,Lo_R2,
    Hi_R2] = biorfilt(DF,RF,'8')
```


Description

The biorfilt command returns either four or eight filters associated with biorthogonal wavelets.
[Lo_D,Hi_D,Lo_R,Hi_R] = biorfilt(DF,RF) computes four filters associated with the biorthogonal wavelet specified by decomposition filter DF and reconstruction filter RF. These filters are

Lo_D	Decomposition low-pass filter
Hi_D	Decomposition high-pass filter
Lo_R	Reconstruction low-pass filter
Hi_R	Reconstruction high-pass filter

[Lo_D1,Hi_D1,Lo_R1,Hi_R1,Lo_D2,Hi_D2,Lo_R2,Hi_R2] = biorfilt ($D F, R F, ' 8$ ') returns eight filters, the first four associated with the decomposition wavelet, and the last four associated with the reconstruction wavelet.

It is well known in the subband filtering community that if the same FIR filters are used for reconstruction and decomposition, then symmetry and exact reconstruction are incompatible (except with the Haar wavelet). Therefore, with biorthogonal filters, two wavelets are introduced instead of just one:

One wavelet, $\tilde{\psi}$, is used in the analysis, and the coefficients of a signal s are

$$
\tilde{c}_{j, k}=\int s(x) \tilde{\psi}_{j, k}(x) d x
$$

The other wavelet, Ψ, is used in the synthesis:

$$
s=\sum_{j, k} \tilde{c}_{j, k} \psi_{j, k}
$$

Furthermore, the two wavelets are related by duality in the following sense:

$$
\int \tilde{\psi}_{j, k}(x) \psi_{j^{\prime}, k^{\prime}}(x) d x=0 \text { as soon as } j \neq j^{\prime} \text { or } k \neq k^{\prime} \text { and }
$$

$\int \tilde{\phi}_{0, k}(x) \phi_{0, k^{\prime}}(x) d x=0$ as soon as $k \neq k^{\prime}$.
It becomes apparent, as A. Cohen pointed out in his thesis (p. 110), that "the useful properties for analysis (e.g., oscillations, null moments) can be concentrated in the $\tilde{\psi}$ function; whereas, the interesting properties for synthesis (regularity) are assigned to the Ψ function. The separation of these two tasks proves very useful."
$\tilde{\psi}$ and Ψ can have very different regularity properties, Ψ being more regular than $\tilde{\psi}$.

The $\tilde{\psi}, \Psi, \tilde{\phi}$ and φ functions are zero outside a segment.

Examples

```
% Compute the four filters associated with spline biorthogonal
% wavelet 3.5: bior3.5.
% Find the two scaling filters associated with bior3.5.
[Rf,Df] = biorwavf('bior3.5');
% Compute the four filters needed.
[Lo_D,Hi_D,Lo_R,Hi_R] = biorfilt(Df,Rf);
subplot(221); stem(Lo_D);
title('Dec. low-pass filter bior3.5');
subplot(222); stem(Hi_D);
title('Dec. high-pass filter bior3.5');
subplot(223); stem(Lo_R);
title('Rec. low-pass filter bior3.5');
subplot(224); stem(Hi_R);
title('Rec. high-pass filter bior3.5');
```


biorfilt

\% Editing some graphical properties, \% the following figure is generated.

Dec. low-pass filter bior3.5

Rec. low-pass fitter bior3. 5

Dec. high-pass filter bior3.5

Rec. high-pass filter bior3. 5


```
% Orthogonality by dyadic translation is lost.
nzer = [Lo_D 0 0]*[0 0 Lo_D]'
nzer =
    -0.6881
nzer = [Hi_D 0 0]*[0 0 Hi_D]'
nzer =
    0.1875
% But using duality we have:
zer = [Lo_D O O]*[O O Lo_R]'
zer =
    -2.7756e-17
zer = [Hi_D 0 0]*[0 O Hi_R]'
zer =
    2.7756e-17
```

```
% But, perfect reconstruction via DWT is preserved.
x = randn(1,500);
[a,d] = dwt(x,Lo_D,Hi_D);
xrec = idwt(a,d,Lo_R,Hi_R);
err = norm(x-xrec)
err =
    5.0218e-15
% High and low frequency illustration.
fftld = fft(Lo_D); ffthd = fft(Hi_D);
freq = [1:length(Lo_D)]/length(Lo_D);
subplot(221); plot(freq,abs(fftld),freq,abs(ffthd));
title('Transfer modulus for dec. filters')
fftlr = fft(Lo_R); ffthr = fft(Hi_R);
freq = [1:length(Lo_R)]/length(Lo_R);
subplot(222); plot(freq,abs(fftlr),freq,abs(ffthr));
title('Transfer modulus for rec. filters')
subplot(223); plot(freq, abs(fftlr.*fftld + ffthd.*ffthr));
title('One biorthogonality condition')
xlabel('|fft(Lo_R)fft(Lo_D) + fft(Hi_R)fft(Hi_D)| = 2')
% Editing some graphical properties,
% the following figure is generated.
```


biorfilt

Note For biorthogonal wavelets, the filters for decomposition and reconstruction are generally of different odd lengths. This situation occurs, for example, for "splines" biorthogonal wavelets used in the toolbox where the four filters are zero-padded to have the same even length.

References

Cohen, A. (1992), "Ondelettes, analyses multirésolution et traitement numérique du signal," Ph. D. Thesis, University of Paris IX, DAUPHINE.

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed.

See Also

biorwavf | orthfilt

Purpose

Biorthogonal spline wavelet filters

Syntax

Description
$\mathrm{Nr}=1 \quad \mathrm{Nd}=1,3$ or 5
$\mathrm{Nr}=2 \quad \mathrm{Nd}=2,4,6$ or 8
$\mathrm{Nr}=3 \quad \mathrm{Nd}=1,3,5,7$ or 9
$\mathrm{Nr}=4 \quad \mathrm{Nd}=4$
$\mathrm{Nr}=5 \quad \mathrm{Nd}=5$
$N r=6 \quad N d=8$

The output arguments are filters.

- RF is the reconstruction filter.
- DF is the decomposition filter.

Examples

\% Set spline biorthogonal wavelet name. wname = 'bior2.2';
\% Compute the two corresponding scaling filters.
\% rf is the reconstruction scaling filter.
\% df is the decomposition scaling filter. [rf,rd] = biorwavf(wname)
$r f=$
$0.2500 \quad 0.5000 \quad 0.2500$
df $=$
$\begin{array}{lllll}-0.1250 & 0.2500 & 0.7500 & 0.2500 & -0.1250\end{array}$

biorwavf

See Also biorfilt | waveinfo

Purpose

Biorthogonal scaling and wavelet functions

Syntax
\section*{Description}

```
[PHIS,PSIS,PHIA,PSIA,XVAL] = bswfun(LoD,HiD,LoR,HiR)
bswfun(LoD,HiD,LoR,HiR,ITER)
bswfun(LoD,HiD,LoR,HiR,'plot')
bswfun(LoD,HiD,LoR,HiR,ITER,'plot')
bswfun(LoD,HiD,LoR,HiR,'plot',ITER)
```


Examples

```
% Start from the Cohen-Daubechies-Feauveau wavelet
% and get the corresponding lifting scheme.
lscdf = liftwave('cdf3.1');
% Visualize the obtained lifting scheme.
displs(lscdf);
lscdf = {...
'p' [ -0.33333333] [-1]
'd' [ -0.37500000 -1.12500000] [1]
'p' [ 0.44444444] [0]
[ 2.12132034] [ 0.47140452] []
};
% Transform the lifting scheme to biorthogonal
% filters quadruplet.
```


bswfun

[LoD,HiD,LoR,HiR] = ls2filt(lscdf);
\% Visualize the two pairs of scaling and wavelet \% functions. bswfun(LoD,HiD,LoR,HiR,'plot');

Algorithms
See Also

This function uses the cascade algorithm.
wavefun

```
Purpose Wavelet center frequency
Syntax FREQ = centfrq('wname')
FREQ = centfrq('wname',ITER)
[FREQ,XVAL,RECFREQ] = centfrq('wname',ITER,'plot')
```


Description

Examples

```
FREQ = centfrq('wname') returns the center frequency in herz of the wavelet function, 'wname '(see wavefun for more information).
For FREQ = centfrq('wname', ITER), ITER is the number of iterations performed by the function wavefun, which is used to compute the wavelet.
[FREQ,XVAL,RECFREQ] = centfrq('wname', ITER,'plot') returns, in addition, the associated center frequency based approximation RECFREQ on the \(2^{\text {ITER }}\) points grid XVAL and plots the wavelet function and RECFREQ.
```

```
% Example 1: a real wavelet
```

% Example 1: a real wavelet
wname = 'db2';
wname = 'db2';
% Compute the center frequency and display
% Compute the center frequency and display
% the wavelet function and the associated
% the wavelet function and the associated
% center frequency based approximation.
% center frequency based approximation.
iter = 8;
iter = 8;
cfreq = centfrq(wname,8,'plot')
cfreq = centfrq(wname,8,'plot')
cfreq =
cfreq =
0.6667

```
    0.6667
```


\% Example 2: a complex wavelet wname = 'cgau6';
\% Compute the center frequency and display
\% the wavelet function and the associated
\% center frequency based approximation. cfreq $=$ centfrq(wname, 8, 'plot')
cfreq $=$
0.6000

See Also

scal2frq | wavefun

Purpose Wavelet packet tree construction from coefficients

Syntax

Description

Examples

```
% Example 1: Using cfs2wpt with the CFS argument
% Loading an image
load detail
% Building the wavelet packet tree decomposition
t = wpdec2(X,2,'sym4');
% Reading the coefficient values from the tree
cfs = read(t,'allcfs');
% Adding noise to the coefficients
noisyCfs = cfs + 40*rand(size(cfs));
% Building the wavelet packet tree object and the reconstructed
% noisy image from the noisyCfs using cfs2wpt
noisyT = cfs2wpt('sym4',size(X),tnodes(t),4,noisyCfs);
% Plotting the new tree and clicking the node (0) or (0,0)
```

```
plot(noisyT)
```



```
% Example 2: Using cfs2wpt without the CFS argument
% Building an empty wavelet packet tree object
t = cfs2wpt('sym4',[1 1024],[3 9 10 2]',2);
% Getting the terminal node sizes
sN = read(t,'sizes',[3,9]);
sN3 = sN(1,:); sN9 = sN(2,:);
% Building coefficient values vectors and writing them in the tree
cfsN3 = ones(sN3);
cfsN9 = randn(sN9);
t = write(t,'cfs',3,cfsN3,'cfs',9,cfsN9);
```

\% Plotting the updated tree and clicking the node (9) or $(3,2)$ plot(t)

Purpose Complex Gaussian wavelet

```
Syntax
[PSI,X] = cgauwavf(LB,UB,N,P)
[PSI,X] = cgauwavf(LB,UB,N)
[PSI,X] = cgauwavf(LB,UB,N,1)
```


Description

Examples

```
% Set effective support and grid parameters.
lb = -5; ub = 5; n = 1000;
% Compute complex Gaussian wavelet of order 4.
[psi,x] = cgauwavf(lb,ub,n,4);
% Plot complex Gaussian wavelet of order 4.
subplot(211)
plot(x,real(psi)),
title('Complex Gaussian wavelet of order 4')
xlabel('Real part'), grid
    subplot(212)
    plot(x,imag(psi))
    xlabel('Imaginary part'), grid
```


See Also

waveinfo

Purpose
Syntax
Description

Change multisignal 1-D decomposition coefficients
DEC = chgwdeccfs(DEC, 'ca', COEFS)
DEC = chgwdeccfs(DEC,'cd',COEFS,LEV)
DEC = chgwdeccfs(DEC,'all',CA,CD)
DEC = chgwdeccfs(DEC,'all', V)
DEC $=$ chgwdeccfs(...,IDXSIG)

Examples \%Load original 1D-multisignal
load thinker
\% Perform a decomposition at level 2 using wavelet db2
dec = mdwtdec('r',X,2,'db2');

See Also mdwtdec | mdwtrec

Purpose
Syntax
Description
Interval-dependent denoising
sigden = cmddenoise(sig, wname,level)
sigden = cmddenoise(sig, wname,level,sorh)
sigden = cmddenoise(sig,wname,level,sorh,nb_inter)
sigden = cmddenoise(sig,wname,level,sorh,nb_inter,
thrParamsIn)
[sigden, coefs] = cmddenoise(_ _)
[sigden, coefs, thrParamsOut] = cmddenoise (__)
[sigden, coefs,thrParamsOut,int_DepThr_Cell]
= cmddenoise(sig,
wname, level,sorh, nb_inter)
[sigden, coefs,thrParamsOut,int_DepThr_Cell, BestNbofInt] = cmddenoise(sig, wname,level,sorh, nb_inter)
sigden = cmddenoise(sig, wname, level) returns the denoised signal, sigden, obtained from an interval-dependent denoising of the signal, sig, using the orthogonal or biorthogonal wavelet and scaling filters, wname. cmddenoise thresholds the wavelet (detail) coefficients down to level, level, and reconstructs a signal approximation using the modified detail coefficients. cmddenoise partitions the signal into intervals based on variance change points in the first level detail coefficients and thresholds each interval separately. The location and number of variance change points are automatically selected using a penalized contrast function [2]. The minimum delay between change points is 10 samples. Thresholds are obtained using a minimax threshold rule and soft thresholding is used to modify the wavelet coefficients [1] .
sigden = cmddenoise(sig,wname, level, sorh) returns the denoised signal, sigden, using the thresholding method, sorh, to modify the wavelet coefficients. Valid choices for sorh are 's ' for soft thresholding or ' h ' for hard thresholding.
sigden = cmddenoise(sig, wname, level, sorh, nb_inter) returns the denoised signal, sigden, with the number of denoising intervals as a positive integer between 1 and $6: 1 \leq$ nb_inter ≤ 6. For nb_inter ≥ 2, cmddenoise estimates the location of the change points with a contrast function [2].
sigden =
cmddenoise(sig, wname, level, sorh, nb_inter, thrParamsIn) returns the denoised signal, sigden, with the denoising intervals and corresponding thresholds specified as a cell array of matrices with length equal to level. Each element of the cell array contains the interval and threshold information for the corresponding level of the wavelet transform. The elements of thrParams In are N-by-3 matrices with N equal to the number of intervals. The 1st and 2nd columns contain the beginning and ending indices of the intervals and the 3rd column contains the corresponding threshold value. If you specify thrParamsIn, cmddenoise ignores the value of nb_inter.
[sigden, coefs] = cmddenoise(___) returns the approximation (scaling) and detail (wavelet) coefficients, coefs. The organization of coefs is identical to the structure returned by wavedec. This syntax can include any of the input arguments used in previous syntaxes.
[sigden, coefs, thrParamsOut] = cmddenoise (__) returns a cell array, thrParamsOut, with length equal to level. Each element of thrParamsOut is an N-by-3 matrix. The row dimension of the matrix elements is the number of intervals and is determined by the value of the input arguments. Each row of the matrix contains the beginning and end points (indices) of the thresholded interval and the corresponding threshold value.
[sigden, coefs,thrParamsOut,int_DepThr_Cell] = cmddenoise(sig, wname, level, sorh, nb_inter) returns a cell array, int_DepThr_Cell, with length equal to 6. int_DepThr_Cell contains interval and threshold information assuming the number of change
points ranges from 0 to 5 . The N-th element of int_DepThr_Cell is a N -by- 3 matrix containing the interval information assuming $\mathrm{N}-1$ change points. Each row of the matrix contains the beginning and end points (indices) of the thresholded interval and the corresponding threshold value. Attempting to output int_DepThr_Cell if you use the input argument, thrParamsIn, results in an error.

Input Arguments

sig-Signal for interval-dependent denoising
 1-D row or column vector

Input signal, specified as a 1-D row or column vector. sig is the real-valued input signal for interval-dependent denoising. The elements of sig are assumed to be equally spaced in time or space. If sig contains unequally-sampled data, cmddenoise is not appropriate. Use a lifting transform instead. See lwt for details.

Data Types
 double
 wname - Wavelet name
 string

Wavelet name, specified as a character array. wname is any valid orthogonal or biorthogonal wavelet. You can use the command: wtype = wavemngr('fields', wname,'type','file'); to determine if the wavelet name is valid to use with cmddenoise. Valid wavelet names return a 1 or 2 for wtype.

Example: 'bior2.2', 'db4', 'sym4'

Data Types
 char

 level - Level of the decimated wavelet transform (multiresolution

 level - Level of the decimated wavelet transform (multiresolution analysis)

 analysis)}
positive integer
Wavelet transform (multiresolution analysis) level, specified as a positive integer. level gives the level of the multiresolution decomposition of the input signal using the decimated 1-D discrete wavelet transform, wavedec.

Data Types
 double
 sorh - Threshold rule

's' (default) | 'h'
Thresholding rule, specified as a character array. sorh is the threshold rule used in the modification of the detail coefficients. Valid choices for sorh are 's' (default) and ' h ' for soft and hard thresholding.

```
nb_inter - Number of intervals
positive integer in the set {1,2,3,4,5,6} | NaN
```

Number of intervals, specified as a positive integer less than 7. cmddenoise divides the input signal into nb_inter intervals. cmddenoise determines the location of the nb_inter change points using a contrast function [2]. If you enter NaN for nb_inter, cmddenoise ignores the input. If you use the input argument thrParamsIn, cmddenoise disregards any value you enter for nb_inter.

Data Types
 double

thrParamsin - Intervals and thresholds by level

cell array of matrices
Intervals and thresholds by level, specified as a cell array of matrices equal in length to level. Each element of thrParamsIn contains the
interval and threshold information for the corresponding level of the multiresolution analysis. The elements of thrParamsIn are N-by-3 matrices with N equal to the number of intervals. The 1st and 2nd columns contain the beginning and ending indices of the intervals and the 3rd column contains the corresponding threshold value. If you specify thrParamsIn, you cannot specify the output arguments int_DepThr_Cell or BestNbofInt.

Data Types
cell

Output
 Arguments

sigden - Denoised signal

1-D row or column vector
sigden is the denoised version of the input sig. sigden is a 1-D row vector equal in length to sig.

coefs - Approximation coefficients and thresholded wavelet coefficients

1-D row vector of approximation coefficients and thresholded wavelet coefficients
coefs is a row vector of approximation (scaling) and thresholded detail (wavelet) coefficients. The ordering of the approximation and detail coefficients by level in coefs is the same as the output of wavedec. cmddenoise does not apply thresholding to the approximation coefficients.

Data Types

double

thrParamsOut - Intervals and thresholds by level
 cell array of matrices

thrParamsOut is a cell array of matrices equal in length to level. Each element of the cell array contains the interval and threshold information for the corresponding level of the multiresolution analysis. The elements of thrParamsOut are N -by- 3 matrices with N equal to the number of intervals. N is determined by the value of the input
arguments. The 1 st and 2 nd columns contain the beginning and ending indices of the intervals and the 3rd column contains the corresponding threshold value.

Data Types

cell

int_DepThr_Cell - Intervals and thresholds assuming 0 to 5 change points

cell array of matrices

int_DepThr_Cell contains interval and threshold information assuming the number of change points ranges from 0 to 5 . The N -th element of int_DepThr_Cell is a N-by-3 matrix containing the interval information assuming N-1 change points. Each row of the matrix contains the beginning and ending indices of the thresholded interval and the corresponding threshold value. Attempting to output int_DepThr_Cell if you input the number of intervals and thresholds, thrParamsIn, results in an error. int_DepThr_Cell\{BestNbofInt \} or int_DepThr_Cell\{nb_inter\} is equal to the matrix elements of thrParamsOut.

Data Types

cell

BestNbofint - Optimal number of intervals

positive integer ≤ 6
BestNbofInt is the optimal number of intervals based on estimated change points in the variance of the level-1 detail coefficients. The number and location of the change points are estimated using a penalized contrast method [2]. Attempting to output BestNbofInt if you input the number of intervals and thresholds, thrParamsIn, results in an error.

Examples Denoising Blocks Signal with Haar Wavelet

Load the noisy blocks signal, nblocr1.mat. The signal consists of a piecewise constant signal in addtive white Gaussian noise. The variance of the additive noise differs in three disjoint intervals.
load nblocr1;
Apply interval-dependent denoising down to level 4 using the Haar wavelet. cmddenoise automatically determines the optimal number and locations of the variance change points. Plot the denoised and original signal for comparison.

```
sigden = cmddenoise(nblocr1,'db1',4);
plot(nblocr1);
hold on;
plot(sigden,'r','linewidth',2);
axis tight;
legend('Original Signal','Denoised Signal','Location','NorthWest');
```


Denoising Blocks Signal with Hard Thresholding

Load the noisy blocks signal, nblocr1.mat. The signal consists of a piecewise constant signal in additive white Gaussian noise. The variance of the additive noise differs in three disjoint intervals.

```
load nblocr1;
```

Apply interval-dependent denoising down to level 4 using the Haar wavelet and a hard thresholding rule. cmddenoise automatically determines the optimal number and locations of the intervals. Plot the original and denoised signals.

```
sorh = 'h';
sigden = cmddenoise(nblocr1,'db1',4,sorh);
plot(nblocr1);
hold on;
plot(sigden,'r','linewidth',2);
axis tight;
legend('Original Signal','Denoised Signal','Location','NorthWest');
```


Specify the Number of Intervals

Create a signal sampled at 1 kHz . The signal consists of a series of bumps of various widths.


```
h = [llllllllllllll
h = abs(h);
len = 1000;
w = 0.01*[0.5 0.5 0.6 1 1 3 1 1 0.5 0.8 0.5];
tt = linspace(0,1,len); x = zeros(1,len);
for j=1:11
    x = x + ( h(j) ./ (1+ ((tt-t(j))/w(j)).^4));
end
plot(tt,x); title('Original Signal');
```

Add white Gaussian noise with different variances to two disjoint segments of the signal. Add zero-mean white Gaussian noise with variance equal to 2 to the signal segment from 0 to 0.3 seconds. Add zero-mean white Gaussian noise with unit variance to the signal segment from 0.3 seconds to 1 second. Set the random number generator to the default settings for reproducible results.

```
rng default;
nv1 = sqrt(2).*randn(size(tt)).*(tt<=0.3);
nv2 = randn(size(tt)).*(tt>0.3);
xx = x+nv1+nv2;
```

Apply interval-dependent denoising using the Daubechies' least-asymmetric wavelet with 5 vanishing moments down to level 3.

Set the number of intervals to 2 . Plot the noisy signal, original signal, and denoised signal for comparison.

```
sigden = cmddenoise(xx,'sym5',3,'s',2);
subplot(211)
plot(tt,xx); title('Noisy Signal');
subplot(212)
plot(tt,x,'k-.','linewidth',2);
hold on;
plot(tt,sigden,'r','linewidth',2);
legend('Original Signal','Denoised Signal','Location','SouthEast');
```

Noisy Signal

Specify Intervals and Thresholds

Load the example signal nbumpr1.mat. The variance of the additive noise differs in three disjoint intervals.

```
load nbumpr1.mat;
```

Use a level-5 multiresolution analysis. Create a cell array of length 5 consisting of 3-by-3 matrices. The first two elements of each row contain the beginning and ending indices of the interval and the last element of each row is the corresponding threshold.

```
thrParamsIn = {...
    [...
    1 207 1.0482; ...
    207 613 2.5110; ...
    613 1024 1.0031; ...
    ]; ...
    [...
    1 207 1.04824; ...
    207 613 3.8718; ...
    613 1024 1.04824; ...
    ]; ...
    [...
    1 207 1.04824; ...
    207 613 1.99710; ...
    613 1024 1.65613; ...
    ]; ...
    [...
    1 207 1.04824; ...
    207 613 2.09117; ...
    613 1024 1.04824; ...
    ]; ...
    [...
    1 207 1.04824; ...
    207 613 1.78620; ...
    613 102 1.04824; ...
    ]; ...
```


cmddenoise

\};

Denoise the signal using the threshold settings and the Daubechies' least-asymmetric wavelet with 4 vanishing moments. Use a soft thresholding rule. Plot the noisy and denoised signals for comparison.

```
wname = 'sym4';
level = 5;
sorh = 's';
sigden = cmddenoise(nbumpr1,wname,level,sorh,NaN,thrParamsIn);
plot(nbumpr1); hold on;
plot(sigden,'r','linewidth',2); axis tight;
legend('Noisy Signal','Denoised Signal','Location','NorthEast');
```


Return Denoised Wavelet Coefficients

Load the example signal nblocr1.mat. Use the Haar wavelet and decompose the signal down to level 2. Obtain the discrete wavelet transform and denoise the signal. Return the wavelet coefficients of the noisy and denoised signals.

```
load nblocr1.mat;
[sigden,coefs] = cmddenoise(nblocr1,'db1',2);
[C,L] = wavedec(nblocr1,2,'db1');
```

Plot reconstructions based on the level-2 approximation and level-2 and level-1 detail coefficients for the noisy signal.

```
app = wrcoef('a',C,L,'db1',2);
subplot(3,1,1);
plot(app); title('Approximation Coefficients');
for nn = 1:2
    det = wrcoef('d',C,L,'db1',nn);
    subplot(3,1,nn+1)
    plot(det); title(['Noisy Wavelet Coefficients - Level ' num2str(nn)])
end
```

Approximation Coefficients

Noisy Wavelet Coefficients - Level 1

Noisy Wavelet Coefficients - Level 2

Plot reconstructions based on the approximation and detail coefficients for the denoised signal at the same levels.

```
figure;
app = wrcoef('a',coefs,L,'db1',2);
subplot(3,1,1);
plot(app); title('Approximation Coefficients');
for nn = 1:2
    det = wrcoef('d',coefs,L,'db1',nn);
    subplot(3,1,nn+1)
    plot(det);
    title(['Thresholded Wavelet Coefficients - Level ' num2str(nn)])
end
Approximation Coefficients
```



```
Thresholded Wavelet Coefficients - Level 1
```



```
Thresholded Wavelet Coefficients - Level 2
```


The approximation coefficients are identical in the noisy and denoised signal, but most of the detail coefficients in the denoised signal are close to zero.

Output Intervals and Thresholds

Create a signal sampled at 1 kHz . The signal consists of a series of bumps of various widths.

```
t =[[llllllllllll}0.
h = [llllllllllllll}
h = abs(h);
len = 1000;
w = 0.01*[0.5 0.5 0.6 1 1 3 1 1 0.5 0.8 0.5];
tt = linspace(0,1,len); x = zeros(1,len);
for j=1:11
    x = x + ( h(j) ./ (1+ ((tt-t(j))/w(j)).^4));
end
plot(tt,x); title('Original Signal');
```

Add white Gaussian noise with different variances to two disjoint segments of the signal. Add zero-mean white Gaussian noise with variance equal to 2 to the signal segment from 0 to 0.3 seconds. Add zero-mean white Gaussian noise with unit variance to the signal segment from 0.3 seconds to 1 second. Set the random number generator to the default settings for reproducible results.

```
rng default;
nv1 = sqrt(2).*randn(size(tt)).*(tt<=0.3);
nv2 = randn(size(tt)).*(tt>0.3);
xx = x+nv1+nv2;
```

Apply interval-dependent denoising using the Daubechies' least-asymmetric wavelet with 4 vanishing moments down to level 5. Automatically choose the number of intervals and output the result.

```
[sigden,coefs,thrParamsOut] = cmddenoise(xx,'sym4',5);
thrParamsOut{1}
```

cmddenoise identifies one variance change point in the 1st level detail coefficients defining two intervals. The first interval contains samples 1 to 293 . The second interval contains samples 293 to 1000 . This is close to the true variance change point, which occurs at sample 299.

Partition Signal into Increasing Numbers of Intervals with Thresholds

Load the example signal, nbumpr1.mat. Partition the signal into 1 to 6 intervals assuming 0 to 5 change points. Compute the thresholds for each interval. Using the Daubechies' least-asymmetric wavelet with 4 vanishing moments return the intervals and corresponding thresholds. Display the results in the command window.

```
load nbumpr1.mat;
[sigden,~,~,int_DepThr_Cell] = cmddenoise(nbumpr1,'sym4',1);
format bank;
disp(' Begin End Threshold ');
cellfun(@disp,int_DepThr_Cell,'UniformOutput',false);
format;
```


Detect Number of Change Points

Load the example signal, nbumpr1.mat. The signal has two variance change points, which results in three intervals.

Use cmddenoise to detect the number of change points. Print the result.

```
load nbumpr1.mat;
[sigden,~,thrParamsOut,~,bestNbofInt] = cmddenoise(nbumpr1,'sym4',1);
fprintf('Found %d change points.\n',bestNbofInt-1);
```


References

[1] Donoho, D. and Johnstone, I. "Ideal spatial adaptation by wavelet shrinkage", Biometrika, 1994, 81,3, 425-455.

cmddenoise

[2] Lavielle, M. "Detection of multiple changes in a sequence of dependent variables", Stochastic Processes and their Applications, 1999, 83, 79-102.

See Also thselect | wavedec | wthresh | wvarchg

Purpose

Complex Morlet wavelet

Syntax

Description
$[P S I, X]=$ cmorwavf(LB $, \mathrm{UB}, \mathrm{N}, \mathrm{FB}, \mathrm{FC})$
$[\mathrm{PSI}, \mathrm{X}]=$ cmorwavf($\mathrm{LB}, \mathrm{UB}, \mathrm{N}, \mathrm{FB}, \mathrm{FC}$) returns values of the complex Morlet wavelet defined by a positive bandwidth parameter FB, a wavelet center frequency $F C$, and the expression

```
PSI (X) = ((pi*FB)^(-0.5))*exp(2*i*pi*FC*X)*exp(-X^2/FB)
```

on an N point regular grid for the interval $[\angle B, U B]$.
Output arguments are the wavelet function PSI computed on the grid X.

Examples

```
% Set bandwidth and center frequency parameters.
fb = 1.5; fc = 1;
% Set effective support and grid parameters.
lb = -8; ub = 8; n = 1000;
% Compute complex Morlet wavelet cmor1.5-1.
[psi,x] = cmorwavf(lb,ub,n,fb,fc);
% Plot complex Morlet wavelet.
subplot(211)
plot(x,real(psi)),
title('Complex Morlet wavelet cmor1.5-1')
xlabel('Real part'), grid
subplot(212)
plot(x,imag(psi))
xlabel('Imaginary part'), grid
```


$\begin{array}{ll}\text { References } \quad & \text { Teolis, A. (1998), Computational signal processing with wavelets, } \\ & \text { Birkhauser, p. } 65 .\end{array}$ See Also waveinfo
Purpose Coiflet wavelet filter
Syntax F = coifwavf(W)
Description F = coifwavf(W) returns the scaling filter associated with the Coifletwavelet specified by the string W where $W=$ 'coifN'. Possible valuesfor N are $1,2,3,4$, or 5 .
Examples \% Set coiflet wavelet name.

wname = 'coif2';
\% Compute the corresponding scaling filter.
f = coifwavf(wname)
$f=$
Columns 1 through 7
$\begin{array}{lllllll}0.0116 & -0.0293 & -0.0476 & 0.2730 & 0.5747 & 0.2949 & -0.0541\end{array}$
Columns 8 through 12
$-0.0420 \quad 0.0167 \quad 0.0040-0.0013-0.0005$
See Also waveinfo

Purpose
Cone of influence
Syntax
cone = conofinf(wname, scales,LenSig, COIval)
[cone, PL, PR] = conofinf(wname,scales,LenSig,COIval)
[cone,PL,PR,PLmin, PRmax] = conofinf(wname,scales,LenSig, COIval)
[PLmin, PRmax] = conofinf(wname,scales,LenSig)
[...] = conofinf(...,'plot')

Description

cone $=$ conofinf(wname, scales, LenSig, COIval) returns the cone of influence (COI) for the wavelet wname at the scales in scales and positions in COIval. LenSig represents the length of the input signal. If COIval is a scalar, cone is a matrix with row dimension length(scales) and column dimension LenSig. If COIval is a vector, cone is a cell array of matrices. COIval can be a value outside of the interval [1, LenSig].
[cone, PL, PR] = conofinf(wname,scales,LenSig, COIval) returns the equations of the left and right boundaries of the cone of influence for the points in COIval. PL and PR are length(COIval)-by- 2 matrices. The first column contains the slope and the second column contains the scale-axis intercept of the lines defining the left and right COI boundaries. The left and right boundaries of the COI at a given scale, Scal, are(Scal-PL(:,2))./PL(:,1) and (Scal-PR(:,2))./PR(:,1).
[cone, PL, PR, PLmin, PRmax] =
conofinf(wname, scales, LenSig, COIval) returns the equations of the lines that define the minimal left and maximal right boundaries of the cone of influence. PLmin and PRmax are 1-by-2 row vectors where PLmin(1) and PRmax(1) are the slopes of the lines. PLmin(2) and PRmax (2) are the points where the lines intercept the scale axis at the maximum scale value in scales.
[PLmin, PRmax] = conofinf(wname,scales,LenSig) returns the slope and intercept terms for the first-degree polynomials defining the minimal left and maximal right vertices of the cone of influence.
[...] = conofinf(...,'plot') plots the cone of influence.

Input Arguments

Output
 Arguments

wname

wname is a string corresponding to a valid wavelet. To verify that wname is a valid wavelet, wavemngr('fields', wname) must return a struct array with a type field of 1 or 2 , or a nonempty bound field.

scales

scales is a vector of scales over which to compute the cone of influence. Larger scales correspond to stretched versions of the wavelet and larger boundary values for the cone of influence.

LenSig

LenSig is the signal length.

COIval

COIval is a vector of values at which to compute the cone of influence. If COIval is empty, conofinf returns the slope and intercept terms for the minimal left and maximal right vertices of the cone of influence. COIval can be a value outside of the interval [1, LenSig].

cone

cone is the cone of influence. If COIval is a scalar value, cone is a matrix. The row dimension equals the number of scales and the column dimension equals the signal length, LenSig. If COIval is a vector, cone is a cell array of matrices. The elements of each row of the matrix are equal to 1 in the interval around COIval corresponding to the cone of influence.

PL

PL contains the slope and intercept terms of the left (minimal) edge of the cone of influence. If COIval is a scalar, PL is a 1-by-2 row vector. If COIval is a vector, PL is a two-column matrix with row dimension equal to the length of COIval.

PR

PR contains the slope and intercept terms of the right (maximal) edge of the cone of influence. If COIval is a scalar, PR is a 1-by-2 row vector. If COIval is a vector, $P R$ is a two-column matrix with row dimension equal to the length of COIval.

PLmin

PLmin is a 1-by-2 row vector containing the slope and scale axis intercept of the line defining the minimal left vertex of the cone of influence. PLmin(1) indicates the slope and PLmin(2) indicates the point where the line intercepts the scale axis at the maximum scale value.

PRmax

PRmax is a 1-by-2 row vector containing the slope and scale axis intercept of the line defining the maximal right vertex of the cone of influence. PRmax (1) indicates the slope and PRmax (2) indicates the point where the line intercepts the scale axis at the maximum scale value.

Definitions Cone of Influence

Let $\Psi(\mathrm{t})$ be an admissible wavelet. Assume that the effective support of $\Psi(\mathrm{t})$ is $[-\mathrm{B}, \mathrm{B}]$. Letting u denote the translation parameter and s denote the scale parameter, you obtain the dilated and translated wavelet as follows:

$$
\psi_{u, s}(t)=\frac{1}{\sqrt{s}} \psi\left(\frac{t-u}{s}\right)
$$

The translated and dilated wavelet has effective support $[\mathrm{u}-\mathrm{sB}, \mathrm{u}+\mathrm{sB}]$. The cone of influence (COI) is the set of all t included in the effective support of the wavelet at a given position and scale. This set equals

$$
|t-u| \leq s B
$$

At each scale, the COI determines the set of wavelet coefficients influenced by the value of the signal at a specified position.

Examples Cone of influence for Mexican hat wavelet.

```
load cuspamax
signal = cuspamax;
wname = 'mexh';
scales = 1:64;
lenSIG = length(signal);
COIval = 500;
figure;
cwt(signal,scales,wname,'plot');
hold on
[cone,PL,PR,Pmin,Pmax] = conofinf(wname,scales,lenSIG,COIval,'plot');
```

Left minimal and right maximal vertices for the cone of influence (Morlet wavelet).

```
[PLmin,PRmax] = conofinf('morl',1:32,1024,[],'plot');
% PLmin = -0.1245*u+ 32.0000
% PRmax = 0.1250*u-96.0000
```

References

Mallat, S. A Wavelet Tour of Signal Processing, London: Academic
Press, 1999, p. 174.
See Also cwt | wavsupport
Tutorials - "Continuous Wavelet Transform"

- "Interpreting CWT Coefficients"
How To- "1-D Continuous Wavelet Analysis"

Purpose
Continuous 1-D wavelet transform

Syntax

```
coefs = cwt(x,scales,'wname')
coefs = cwt(x,scales,'wname','plot')
coefs = cwt(x,scales,'wname','coloration')
[coefs,sgram] = cwt(x,scales,'wname','scal')
[coefs,sgram] = cwt(x,scales,'wname','scalCNT')
coefs = cwt(x,scales,'wname','coloration',xlim)
```


Description

Definitions

coefs = cwt(x,scales,'wname') computes the continuous wavelet coefficients of the signal vector x at real, positive scales, using wavelet 'wname' (see waveinfo for more information). x is real and the wavelet can be real or complex. coefs is an $l a$-by- $l x$ matrix, where $l a$ is the length of scales and $l x$ is the length of the input x. coefs is a real or complex matrix, depending on the wavelet type.
coefs = cwt(x,scales,'wname','plot') plots the continuous wavelet transform coefficients, using default coloration 'absglb'.
coefs = cwt(x,scales,'wname','coloration') uses the specified coloration.
[coefs,sgram] = cwt(x,scales,'wname','scal') displays a scaled image of the scalogram.
[coefs,sgram] = cwt(x,scales,'wname','scalCNT') displays a contour representation of the scalogram.
coefs = cwt(x,scales,'wname','coloration',xlim) colors the coefficients using coloration and xlim, where xlim is a vector, [x 1 x 2], with $1 \leq x 1<x 2 \leq$ length (x).

Scale values

Scale values determine the degree to which the wavelet is compressed or stretched. Low scale values compress the wavelet and correlate better with high frequencies. The low scale CWT coefficients represent the fine-scale features in the input signal vector. High scale values stretch the wavelet and correlate better with the low frequency content
of the signal. The high scale CWT coefficients represent the coarse-scale features in the input signal.

Coloration

Coloration is the method used to scale the coefficient values for plotting. Each coefficient is divided by the resulting coloration value.

- 'lvl' - uses maximum value in each scale
- 'glb' - uses maximum value in all scales
- 'abslvl' or 'lvlabs' - uses maximum absolute value in each scale
- 'absglb' or 'glbabs' - uses maximum absolute value in all scales
- 'scal' - produces a scaled image of the scalogram
- 'scalCNT' - produces a contour representation of the scalogram

For 3-D plots (surfaces), use the coloration parameter preceded by '3D', such as coefs = cwt(...,'3Dplot') or coefs = cwt(...,'3Dlvl') ...

Scalogram

Scalograms are plots that represent the percentage energy for each coefficient.

Examples

Plot the continuous wavelet transform and scalogram using sym2 wavelet at all integer scales from 1 to 32 , using a fractal signal as input:

```
load vonkoch
vonkoch=vonkoch(1:510);
len = length(vonkoch);
cw1 = cwt(vonkoch,1:32,'sym2','plot');
title('Continuous Transform, absolute coefficients.')
ylabel('Scale')
[cw1,sc] = cwt(vonkoch,1:32,'sym2','scal');
title('Scalogram')
ylabel('Scale')
```

Compare discrete and continuous wavelet transforms, using a fractal signal as input:

```
load vonkoch
vonkoch=vonkoch(1:510);
len=length(vonkoch);
[c,l]=wavedec(vonkoch,5,'sym2');
% Compute and reshape DWT to compare with CWT.
cfd=zeros(5,len);
for k=1:5
    d=detcoef(c,l,k);
    d=d(ones(1,2^k),:);
    cfd(k,:)=wkeep(d(:)',len);
end
cfd=cfd(:);
I=find(abs(cfd) <sqrt(eps));
cfd(I)=zeros(size(I));
cfd=reshape(cfd,5,len);
% Plot DWT.
subplot(311); plot(vonkoch); title('Analyzed signal.');
set(gca,'xlim',[0 510]);
subplot(312);
image(flipud(wcodemat(cfd,255,'row')));
colormap(pink(255));
set(gca,'yticklabel',[]);
title('Discrete Transform,absolute coefficients');
ylabel('Level');
% Compute CWT and compare with DWT
subplot(313);
ccfs=cwt(vonkoch,1:32,'sym2','plot');
title('Continuous Transform, absolute coefficients');
set(gca,'yticklabel',[]);
ylabel('Scale');
```


References

How To

See Also

Daubechies, I. Ten Lectures on Wavelets, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1992.

Mallat, S. A Wavelet Tour of Signal Processing, San Diego, CA: Academic Press, 1998.
"Continuous Wavelet Transform"
"1-D Continuous Wavelet Analysis"
"New Wavelet for CWT"
cwtext | dwt | wavedec | wavefun | waveinfo | wcodemat

```
Purpose Continuous wavelet transform using FFT algorithm
Syntax cwtstruct = cwtft(sig)
cwtstruct = cwtft(sig,Name,Value)
cwtstruct = cwtft(...,'plot')
```


Description

cwtstruct $=$ cwtft(sig) returns the continuous wavelet transform (CWT) of the 1-D input signal sig. cwtft uses an FFT algorithm to compute the CWT. sig can be a vector, a structure array, or a cell array. If the sampling interval of your signal is not equal to 1 , you must input the sampling period with sig in a cell array or a structure array to obtain correct results. If sig is a cell array, sig\{1\} is equal to your signal and sig\{2\} is equal to the sampling interval. If sig is a structure array, the field sig.val contains your signal and sig. period contains the sampling interval.

By default, cwtft uses the analytic Morlet wavelet. See "Wavelet Definitions" on page 1-73 for a description of valid analyzing wavelets.

For additional default values, see scales in "Name-Value Pair Arguments" on page 1-71.
cwtstruct = cwtft(sig,Name, Value) returns the continuous wavelet transform (CWT) of the 1-D input signal sig with additional options specified by one or more Name, Value pair arguments. See "Name-Value Pair Arguments" on page 1-71 for a comprehensive list.
cwtstruct = cwtft(...,'plot') plots the continuous wavelet transform. If the analyzing wavelet is real-valued, the original signal along with the CWT coefficient magnitudes and signed CWT coefficients are plotted. If the analyzing wavelet is complex-valued, the original signal is plotted along with the moduli, real parts, imaginary parts, and angles of the CWT coefficients. You can select the radio button in the bottom left of the plot to superimpose the signal's reconstruction using icwtft.

Input Arguments

sig

The 1-D input signal. sig can be a vector, a structure array, or a cell array. If sig is a structure array, sig contains two fields: val and period. sig.val is the signal vector and sig.period is the sampling period. If sig is a cell array, sig\{1\} is the signal vector and sig\{2\} is the sampling period.

If sig is a vector, the sampling period defaults to 1.

Note If the sampling interval of your input signal is not 1, you must input the sampling interval with sig in a cell array or structure array to obtain correct results. If sig is a cell array, sig\{1\} is the $1-D$ input signal and sig\{2\} is the sampling period. If sig is a structure array, the field sig.val is the $1-\mathrm{D}$ input signal and sig.period is the sampling interval.

Name-Value Pair Arguments

'scales'

Scales over which to compute the CWT. The value of scales can be a vector, a structure array, or a cell array. If scales is a structure array, it contains at most five fields. The first three fields are mandatory. The last two fields are optional.

1 s0 - The smallest scale. The default s0 depends on the wavelet. See "Wavelet Definitions" on page 1-73 for the wavelet-dependent default.

2 ds - Spacing between scales. The default ds depends on the wavelet. See "Wavelet Definitions" on page 1-73 for the wavelet-dependent default. You can construct a linear or logarithmic scale vector using ds. See type for a description of the type of spacing.

3 nb - Number of scales. The default nb depends on the wavelet. See "Wavelet Definitions" on page 1-73 for the wavelet-dependent default.

4 type - Type of spacing between scales. type can be one of 'pow' or 'lin'. The default is 'pow'. If type is equal to 'pow', the CWT scales are s0*pow.^($\left.0: n b-1)^{*} d s\right)$. This results in a constant spacing of ds if you take the logarithm to the base power of the scales vector. If type is equal to 'lin', the CWT scales are linearly spaced by s0 + (0:nb-1)*ds.

Use the default power of two spacing to ensure an accurate approximation to the original signal based only on select scales. See the second example in "Examples" on page 1-75 for a signal approximation based on select scales.

5 pow - The base for 'pow' spacing. The default is 2. This input is valid only if the type argument is 'pow'.

If scales is a cell array, the first three elements of the cell array are identical to the first three elements of the structure array described in the preceding list. The last two elements of the cell array are optional and match the two optional inputs in the structure array described in the preceding list.

'wavelet'

Analyzing wavelet. The supported analyzing wavelets are:

- 'dog' - m-th order derivative of a Gaussian wavelet where m is a positive even integer. The default value of m is 2 .
- 'morl' - Morlet wavelet. Results in an analytic Morlet wavelet. The Fourier transform of an analytic wavelet is zero for negative frequencies.
- 'morlex' - non-analytic Morlet wavelet
- 'morl0' - non-analytic Morlet wavelet with zero mean
- 'mexh' - Mexican hat wavelet. The Mexican hat wavelet is a special case of the m-th order derivative of a Gaussian wavelet with $m=2$.
- 'paul' - Paul wavelet

See "Wavelet Definitions" on page 1-73 for formal definitions of the supported analyzing wavelets and associated defaults.

Default: 'morl'

Output
 Arguments

cwtstruct

A structure array with six fields. The fields of the structure array are:

- $d t$ - The sampling interval of the $1-D$ input signal
- cfs - The CWT coefficient matrix. cwtstruct.cfs is an nb-by-N matrix where nb is the number of scales and N is the length of the input signal.
- meanSIG - Mean of the analyzed signal
- omega - Vector of angular frequencies
- scales - Vector of scales at which the CWT is computed. The length of cwtstruct.scales is equal to the row dimension of cwtstruct.cfs.
- wav - Analyzing wavelet

Definitions Wavelet Definitions

Morlet Wavelet

Both non-analytic and analytic Morlet wavelets are supported. The analytic Morlet wavelet, 'morl', is defined in the Fourier domain by:

$$
\hat{\Psi}(s \omega)=\pi^{-1 / 4} e^{\left(s \omega-\omega_{0}\right)^{2} / 2} U(s \omega)
$$

where $U(\omega)$ is the Heaviside step function [5].
The non-analytic Morlet wavelet, 'morlex', is defined in the Fourier domain by:

$$
\hat{\Psi}(s \omega)=\pi^{-1 / 4} e^{\left(s \omega-\omega_{0}\right)^{2} / 2}
$$

'morl0' defines a non-analytic Morlet wavelet in the Fourier domain with exact zero mean:

$$
\hat{\Psi}(s \omega)=\pi^{-1 / 4}\left\{e^{\left(s \omega-\omega_{0}\right)^{2} / 2}-e^{\omega_{0}^{2} / 2}\right\}
$$

The default value of ω_{0} is 6 .
The scale-to-frequency Fourier factor for the Morlet wavelet is:

$$
\frac{4 \pi s}{\omega_{0}+\sqrt{2+\omega_{0}^{2}}}
$$

The default smallest scale for the Morlet wavelets is $2 * d t$ where $d t$ is the sampling period.

The default spacing between scales for the Morlet wavelets is $\mathrm{ds}=0.4875$.

The default number of scales for the Morlet wavelets is fix(log2(length(sig))/ds)+1.

m-th Order Derivative of Gaussian Wavelets

In the Fourier domain, the m-th order derivative of Gaussian wavelets, 'dog', are defined by:

$$
\hat{\Psi}(s \omega)=-\frac{1}{\sqrt{\Gamma(m+1 / 2)}}(j s \omega)^{m} e^{-(s \omega)^{2} / 2}
$$

where $\Gamma()$ denotes the gamma function [5].
The derivative must be an even order. The default order of the derivative is 2 , which is also known as the Mexican hat wavelet .

The scale-to-frequency Fourier factor for the DOG wavelet is:

$$
\frac{2 \pi s}{\sqrt{m+\frac{1}{2}}}
$$

The default smallest scale for the DOG wavelet is $2 * d t$ where $d t$ is the sampling period.
The default spacing between scales for the DOG wavelet is $\mathrm{ds}=0.4875$.
The default number of scales for the DOG wavelet is max([fix(log2(length(sig))/ds),1]).

Paul Wavelet

The Fourier transform of the analytic Paul wavelet, 'paul', of order m is:

$$
\hat{\Psi}(s \omega)=2^{m} \sqrt{m(2 m-1)!}(s \omega)^{m} e^{-s \omega} U(s w)
$$

where $U(\omega)$ is the Heaviside step function [5].
The default order of the Paul wavelet is 4.
The scale-to-frequency Fourier factor for the Paul wavelet is:

$$
\frac{4 \pi s}{2 m+1}
$$

The default smallest scale for the Paul wavelet is $2 * d t$ where $d t$ is the sampling period.
The default spacing between scales for the Paul wavelet is $\mathrm{ds}=0.4875$.
The default number of scales for the Paul wavelet is fix(log2(length(sig))/ds)+1.

Examples
 Compute and display the CWT of sine waves with disjoint support.

 The sampling interval is $1 / 1023$.```
N = 1024;
% Sampling interval is 1/1023
t = linspace(0,1,N);
y = sin(2*pi*4*t).*(t<=0.5)+sin(2*pi*8*t).*(t>0.5);
% Because the sampling interval differs from the default
% you must input it along with the signal
% Using cell array input
```

```
sig = {y,1/1023};
cwtS1 = cwtft(sig,'plot');
```



You can display or hide the reconstructed signal using the radio button at the bottom left of the figure. When you select the radio button, the maximum and quadratic relative errors are computed and displayed along with the reconstructed signal.

Reconstruct an approximation to a sum of disjoint sine waves in noise using cwtft to decompose the signal and icwtft to reconstruct the approximation. Use the CWT coefficients to identify the scales isolating the sinusoidal components. Reconstruct an approximation to the signal based on those scales using the inverse CWT. To ensure an accurate approximation to the based on select scales, use the default power of two spacing in the CWT.
rng default \% Reset random number generator for reproducible results N = 1024;

```
% Sampling interval is 1/1023
t = linspace(0,1,N);
y = sin(2*pi*4*t).*(t<=0.5)+sin(2*pi*8*t).*(t>0.5);
ynoise = y+randn(size(t));
% Because the sampling interval differs from the default
% you must input it along with the signal
% Using structure array input
sig = struct('val',ynoise,'period',1/1023);
cwtS1 = cwtft(sig);
scales = cwtS1.scales;
MorletFourierFactor = 4*pi/(6+sqrt(2+6^2));
freq = 1./(scales.*MorletFourierFactor);
contour(t,freq,real(cwtS1.cfs));
xlabel('Seconds'); ylabel('Pseudo-frequency');
axis([0 t(end) 0 15]);
```



Extract the scales dominated by energy from the two sine waves and reconstruct a signal approximation using the inverse CWT.

```
cwtS2 = cwtS1;
cwtS2.cfs = zeros(size(cwtS1.cfs));
cwtS2.cfs(13:15,:) = cwtS1.cfs(13:15,:);
xrec = icwtft(cwtS2);
subplot(2,1,1);
plot(t,ynoise);
title('Sum of Disjoint Sinusoids in Noise');
subplot(2,1,2);
plot(t,xrec,'b'); hold on; axis([0 1 -4 4]);
plot(t,y,'r');
legend('Reconstructed Signal','Original Signal',...
```

```
 'Location','NorthWest');
xlabel('Seconds'); ylabel('Amplitude');
```




## Algorithms

cwtft implements the following algorithm:

- Obtain the discrete Fourier transform (DFT) of the signal using fft.
- Obtain the DFT of the analyzing wavelet at the appropriate angular frequencies. Scale the DFT of the analyzing wavelet at different scales to ensure different scales are directly comparable.
- Take the product of the signal DFT and the wavelet DFT over all the scales. Invert the DFT to obtain the CWT coefficients.

For a mathematical motivation for the FFT-based algorithm see "DFT-Based Continuous Wavelet Transform".

References<br>Alternatives - cwt - Computes the CWT using convolutions. cwt supports a wider choice of analyzing wavelets than cwtft, but may be more computationally expensive. The output of cwt is not compatible with the inverse CWT implemented with icwtft. To use icwtft, obtain the CWT with cwtft.<br>\section*{See Also cwt \| icwtft}<br>How To . "Continuous Wavelet Transform"<br>- "DFT-Based Continuous Wavelet Transform"<br>- "Inverse Continuous Wavelet Transform"

## Purpose Valid analyzing wavelets for FFT-based CWT

## Syntax cwtftinfo

Description cwtftinfo displays expressions for the Fourier transforms of valid analyzing wavelets for use with cwtft.

## Definitions Wavelet Definitions

## Morlet Wavelet

Both non-analytic and analytic Morlet wavelets are supported. The analytic Morlet wavelet, 'morl', is defined in the Fourier domain by:

$$
\hat{\Psi}(s \omega)=\pi^{-1 / 4} e^{\left(s \omega-\omega_{0}\right)^{2} / 2} U(s \omega)
$$

where $U(\omega)$ is the Heaviside step function.
The non-analytic Morlet wavelet, 'morlex', is defined in the Fourier domain by:

$$
\hat{\Psi}(s \omega)=\pi^{-1 / 4} e^{\left(s \omega-\omega_{0}\right)^{2} / 2}
$$

'morl0' defines a non-analytic Morlet wavelet in the Fourier domain with exact zero mean:

$$
\hat{\Psi}(s \omega)=\pi^{-1 / 4}\left\{e^{\left(s \omega-\omega_{0}\right)^{2} / 2}-e^{\omega_{0}^{2} / 2}\right\}
$$

The default value of $\omega_{0}$ is 6 .
The scale-to-frequency Fourier factor for the Morlet wavelet is:

$$
\frac{4 \pi s}{\omega_{0}+\sqrt{2+\omega_{0}^{2}}}
$$

## $\boldsymbol{m}$-th Order Derivative of Gaussian Wavelets

In the Fourier domain, the $m$-th order derivative of Gaussian wavelets, ' ${ }^{\prime}$ og ', is defined by:

$$
\hat{\Psi}(s \omega)=-\frac{1}{\sqrt{\Gamma(m+1 / 2)}}(j s \omega)^{m} e^{-(s \omega)^{2} / 2}
$$

The derivative must be an even order. The default order of the derivative is 2, which is also known as the Mexican hat wavelet.

Because the unit imaginary, $j$, is always raised to an even power, the Fourier transform is real-valued.

The scale-to-frequency Fourier factor for the DOG wavelet is:

$$
\frac{2 \pi s}{\sqrt{m+\frac{1}{2}}}
$$

## Paul Wavelet

The Fourier transform of the Paul wavelet, 'paul ', of order $m$ is:

$$
\hat{\Psi}(s \omega)=2^{m} \sqrt{m(2 m-1)!}(s \omega)^{m} e^{-s \omega} U(s w)
$$

where $U(\omega)$ is the Heaviside step function. The Paul wavelet is analytic. The scale-to-frequency Fourier factor for the Paul wavelet is:

$$
\frac{4 \pi s}{2 m+1}
$$

The default order of the Paul wavelet is 4 .

## Examples Display a list of Fourier transforms for all valid analyzing wavelets. cwtftinfo

## References

[1] Daubechies, I. Ten Lectures on Wavelets, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1992.
[2] Farge, M. Wavelet Transforms and Their Application to Turbulence, Ann. Rev. Fluid. Mech., 1992, 24, 395-457.
[3] Mallat, S. A Wavelet Tour of Signal Processing, San Diego, CA: Academic Press, 1998.
[4] Torrence, C. and G.P. Compo A Practical Guide to Wavelet Analysis, Bull. Am. Meteorol. Soc., 79, 61-78, 1998.

See Also<br>cwtft | icwtft<br>How To<br>- "Continuous Wavelet Transform"<br>- "DFT-Based Continuous Wavelet Transform"<br>- "Inverse Continuous Wavelet Transform"

Purpose

Syntax

COEFS = cwtext(S,SCALES,'wname') COEFS = cwtext(S,SCALES,'wname',PropName1,ProVal1, ...) EXTMODE = struct('Mode',ModeVAL,'Side',SideVAL,'Len',LenVAL); EXTMODE = \{ModeVAL,SideVAL,LenVAL\}; COEFS $=$ cwtext(...,'PlotMode',PLOTMODE)

## Description

Real or complex continuous 1-D wavelet coefficients using extension parameters

COEFS = cwtext(S,SCALES,'wname') computes the continuous wavelet coefficients of the vector $S$ at real, positive SCALES, using a wavelet named 'wname'. The signal $S$ is real; the wavelet can be real or complex.

COEFS = cwtext(S,SCALES, 'wname',PropName1,ProVal1, ...) computes and plots the continuous wavelet transform coefficients using extra parameters. Valid values for PropName are:

- 'ExtMode'
- 'ExtSide'
- 'ExtLen'
- 'PlotMode'
- 'xlim'

The continuous wavelet transform coefficients are computed using the extension parameters:

- 'ExtMode'
- 'ExtSide'
- 'ExtLen'

Valid values for ExtMode are:

- 'zpd' (zero padding)
- 'spo' (smooth extension of order 0)
- 'sp1' (smooth extension of order 1)
etc.
Valid values for ExtSide are:
- ExtSide = 'l' (or 'u') for left (or up) extension
- ExtSide = 'r' (or 'd') for right (or down) extension
- ExtSide = 'b' for extension on both sides
- ExtSide = 'n' null extension

For the complete list of valid values for ExtMode and ExtSide, see wextend.

ExtLen is the length of extension.
Default values for extension parameters are 'zpd' and 'b'. ExtLen is computed using the maximum of SCALES.

Instead of three parameters, use the following syntaxes:
EXTMODE =
struct('Mode',ModeVAL, 'Side',SideVAL,'Len',LenVAL);
EXTMODE $=$ \{ModeVAL,SideVAL,LenVAL\};
COEFS $=$ cwtext (...,'PlotMode', PLOTMODE) computes and plots the continuous wavelet transform coefficients. Coefficients are colored using PLOTMODE:

- PLOTMODE = 'lvl' (By scale)
- PLOTMODE = 'glb' (All scales)
- PLOTMODE = 'abslvl' or 'lvlabs' (Absolute value and By scale)
- PLOTMODE = 'absglb' or 'glbabs' (Absolute value and All scales)

You get 3-D plots (surfaces) using the same keywords listed above for the PLOTMODE parameter, preceded by '3D', for example, PLOTMODE = '3Dlvl'.

When PLOTMODE = 'scal' or 'scalCNT' the continuous wavelet transform coefficients and the corresponding scalogram (percentage of energy for each coefficient) are computed.

When PLOTMODE is 'scal', a scaled image of scalogram is displayed. When PLOTMODE is 'scalCNT', a contour representation of scalogram is displayed.

If the XLIM parameter is given, the continuous wavelet transform coefficients are colored using PLOTMODE and XLIM.

XLIM $=[x 1 \quad x 2]$ with $1<=x 1<x 2<=$ length (S).
For each given scale a within the vector SCALES, the wavelet coefficients $C(a, b)$ are computed for $b=1$ to $l s=$ length $(S)$, and are stored in $\operatorname{COEFS}(\mathrm{i},:) \quad$ if a $=\operatorname{SCALES}(\mathrm{i})$.

Output argument COEFS is a la-by-ls matrix where la is the length of SCALES. COEFS is a real or complex matrix depending on the wavelet type.

Examples of valid use are as follows:

```
t = linspace(-1,1,512);
s = 1-abs(t);
c = cwtext(s,1:32,'cgau4');
c = cwtext(s,[64 32 16:-2:2],'morl');
c = cwtext(s,[3 18 12.9 7 1.5],'db2');
c = cwtext(s,1:32,'sym2','plotMode','lvl');
c = cwtext(s,1:64,'sym4','plotMode','abslvl','xlim',[100 400]);
[c,Sc] = cwtext(s,1:64,'sym4','plotMode','scal');
[c,Sc] = cwtext(s,1:64,'sym4','plotMode','scalCNT');
[c,Sc] = cwtext(s,1:64,'sym4','plotMode','scalCNT', ...
 'extMode','sp1');
c = cwtext(s,1:64,'sym4','plotMode','lvl','extMode','spO');
c = cwtext(s,1:64,'sym4','plotMode','lvl','extMode','sp1');
c = cwtext(s,1:64,'sym4','plotMode','lvl', ...
 extMode',{'sp1','b',300});
```

```
ext = struct('Mode','sp1','Side','b','Len',300);
c = cwtext(s,1:64,'sym4','plotMode','lvl','extMode',ext);
```


## Examples

This example demonstrates the difference between a continuous wavelet transform which deals with signal extension and one which does not.

```
% Load and plot the signal
load wcantor
plot(wcantor)
```


\% Compute and plot the coefficients cwt (wcantor,(1:256), 'mexh','absglb'); colormap(pink(4))


In this figure above, which is produced by the cwt function, the values of coefficients are tremendously affected by the boundary effect due to the discontinuity of the signal on the right. The default (zero-padding) extension mode on the right explains this important discontinuity because the last value is 1 . On the left there is no effect because the first value is 0 .

```
% Compute and plot the coefficients with adapted extension mode
figure;
cwtext(wcantor,(1:256),'mexh','extmode','spO','extLen',2000, ...
 'plotMode','absglb');
colormap(pink(4))
```



In this figure, produced by the cwtext function, the suitable extension mode of the signal is very efficient, giving as it can be seen, a good result.

See Also cwt | wavedec | wavefun | waveinfo | wcodemat

## Purpose Daubechies wavelet filter computation

```
Syntax W = dbaux(N,SUMW)
W = dbaux(N)
W = dbaux(N,O)
```

Description
W = dbaux ( N, SUMW) is the order $N$ Daubechies scaling filter such that sum $(W)=$ SUMW. Possible values for $N$ are 1, 2, 3, ...

Note Instability may occur when $N$ is too large.

```
W = dbaux(N) is equivalent to W = dbaux(N,1)
W = dbaux (N,0) is equivalent to W = dbaux (N,1)
```


## Examples

```
% P the "Lagrange trous" filter for N=2 is explicit
% and given by:
P = [-1/16 0 9/16 1 9/16 0 -1/16]
P =
 -0.0625 0
% The db2 Daubechies scaling filter w, is a
% solution of the equation: P = conv(wrev(w),w) * 2.
%
% This filter P is symmetric, easy to generate, and w is
% a minimum phase solution of the previous equation,
% based on the roots of P.
rP = roots(P);
% Retaining only the root inside the unit circle (here it
% is the sixth value of rP), and two roots located at -1,
% we obtain the Daubechies wavelet of order 2:
ww = poly([rP(6) -1 -1]); % filter construction
ww = ww / sum(ww) % normalize sum
```

```
ww =
 0.3415 0.5915 0.1585 -0.0915
% Check that ww is correct and equal to
% the db2 Daubechies scaling filter w.
w = dbaux(2)
w =
 0.3415 0.5915 0.1585 -0.0915
```


## Algorithms

The algorithm used is based on a result obtained by Shensa (see "References"), showing a correspondence between the "Lagrange à trous" filters and the convolutional squares of the Daubechies wavelet filters.

The computation of the order $N$ Daubechies scaling filter $w$ proceeds in two steps: compute a "Lagrange à trous" filter $P$, and extract a square root. More precisely:

- P the associated "Lagrange à trous" filter is a symmetric filter of length $4 \mathrm{~N}-1$. P is defined by

$$
P=[\alpha(N) 0 a(N-1) 0 \ldots 0 a(1) 1 a(1) 0 a(2) 0 \ldots 0 a(N)]
$$

- where

$$
a(k)=\frac{\prod_{i=k}^{i \neq k}\left(\frac{1}{2}-i\right)}{\prod_{i=-N+1}^{N}(k-i)} \text { for } k=1, \ldots, N
$$

- Then, if $w$ denotes dbN Daubechies scaling filter of sum $\sqrt{2}, w$ is a square root of $P$ :

$$
P=\operatorname{conv}(\operatorname{wrev}(w), w) \text { where } w \text { is a filter of length } 2 N .
$$

The corresponding polynomial has $N$ zeros located at -1 and $N-1$ zeros less than 1 in modulus.

Note that other methods can be used; see various solutions of the spectral factorization problem in Strang-Nguyen (p. 157).

## Limitations

References
The computation of the dbN Daubechies scaling filter requires the extraction of the roots of a polynomial of order 4 N . Instability may occur when $N$ is too large.

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics, SIAM Ed.

Shensa, M.J. (1992), "The discrete wavelet transform: wedding the a trous and Mallat Algorithms," IEEE Trans. on Signal Processing, vol. 40, 10, pp. 2464-2482.

Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge Press.
dbwavf | wfilters
Purpose Daubechies wavelet filter
Syntax F = dbwavf(W)
Description $F=$ dbwavf(W) returns the scaling filter associated with Daubechieswavelet specified by the string $W$ where $W=$ 'dbN'. Possible values for$N$ are $1,2,3, \ldots, 45$.
Examples \% Set Daubechies wavelet ..... name.

wname = 'db4';
\% Compute the corresponding scaling filter.
f = dbwavf(wname)
f =
Columns 1 through 7
$\begin{array}{lllllll}0.1629 & 0.5055 & 0.4461 & -0.0198 & -0.1323 & 0.0218 & 0.0233\end{array}$
Column 8
-0.0075
See Also ..... dbaux | waveinfo | wfilters

| Purpose | Default values for denoising or compression |
| :---: | :---: |
| Syntax | [THR, SORH, KEEPAPP, CRIT] = ddencmp(IN1,IN2,X) |
|  | [THR, SORH, KEEPAPP] = ddencmp(IN1, 'wv', X) |
|  | [THR, SORH, KEEPAPP, CRIT] = ddencmp(IN1,'wp ', |

## Description

## Examples

ddencmp returns default values for denoising or compression for the critically-sampled discrete wavelet or wavelet packet transform.

You can use ddencmp for 1-D signals or 2-D images.
[THR, SORH, KEEPAPP, CRIT] = ddencmp(IN1, IN2,X) returns default values for denoising or compression, using wavelets or wavelet packets, of an input vector or matrix $X$, which can be a one- or two-dimensional signal. THR is the threshold, SORH is for soft or hard thresholding, KEEPAPP allows you to keep approximation coefficients, and CRIT (used only for wavelet packets) is the entropy name (see wentropy for more information).
IN1 is 'den' for denoising or 'cmp' for compression.
IN2 is 'wv' for wavelet or 'wp' for wavelet packet.
For wavelets (three output arguments):
[THR, SORH, KEEPAPP] = ddencmp(IN1,'wv',X) returns default values for denoising (if IN1 = 'den') or compression (if IN1 = 'cmp') of $x$. These values can be used for wdencmp.

For wavelet packets (four output arguments):
[THR,SORH, KEEPAPP,CRIT] = ddencmp(IN1,'wp',X) returns default values for denoising (if IN1 = 'den') or compression (if IN1 = 'cmp') of $X$. These values can be used for wdencmp.

## Default Global Threshold for Wavelet Denoising

Determine the default global denoising threshold for an $\mathrm{N}(0,1)$ white noise input.

Create an $\mathrm{N}(0,1)$ white noise input. Set the random number generator to the default initial settings for reproducible results.

```
dwtmode('per');
rng default;
x = randn(512,1);
```

Use ddencmp to obtain the default global threshold for wavelet denoising. Demonstrate that the threshold is equal to the universal threshold of Donoho and Johnstone scaled by a robust estimate of the variance.

```
[thr,sorh,keepapp] = ddencmp('den','wv',x);
[A,D] = dwt(x,'db1');
noiselev = median(abs(D))/0.6745;
thresh = sqrt(2*log(length(x)))*noiselev;
```

Compare the value of the variable thr to the value of thresh.

## Default Global Threshold for Wavelet Packet Compression

Determine the default global compression threshold for an $\mathrm{N}(0,1)$ white noise input.

Create an $\mathrm{N}(0,1)$ white noise input. Set the random number generator to the default initial settings for reproducible results.

```
dwtmode('per');
rng default;
x = randn(512,1);
```

Use ddencmp with the 'cmp' and 'wp' input arguments to return the default global compression threshold for a wavelet packet transform.
[thr,sorh,keepapp,crit] = ddencmp('den','wp',x) ;

[^2]
## ddencmp

Donoho, D.L.; I.M. Johnstone (1994), "Ideal spatial adaptation by wavelet shrinkage," Biometrika, vol 81, pp. 425-455.

Donoho, D.L.; I.M. Johnstone (1994), "Ideal de-noising in an orthonormal basis chosen from a library of bases," C.R.A.S. Paris, Ser. I, t. 319, pp. 1317-1322.

See Also
wdencmp | wenergy | wpdencmp

## Purpose Node depth-position to node index

## Syntax

Description

## Examples

depo2ind is a tree-management utility.
For a tree of order ORD, $N=$ depo2ind(ORD, [D P]) computes the indices $N$ of the nodes whose depths and positions are encoded within [ $\mathrm{D}, \mathrm{P}$ ].
The nodes are numbered from left to right and from top to bottom. The root index is 0 .
$D$ and $P$ are column vectors. The values of depths $D$ and positions $P$ must be such that $\mathrm{D} \geq 0$ and $0 \leq \mathrm{P} \leq \mathrm{ORD}^{\mathrm{D}-1}$.

Output indices $N$ are such that $0 \leq N<\left(O R D^{\max (D)}-1\right) /(O R D-1)$.
Note that for a column vector $X$, we have depo2ind $(0, X)=X$.

```
% Create initial tree.
ord = 2;
t = ntree(ord,3); % binary tree of depth 3.
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)
```


\% List t nodes (Depth_Position).

```
aln_depo = allnodes(t,'deppos')
aln_depo =
 0
 1 0
 1
 2 0
 2 1
 2 2
 2 3
 3
 3 1
 3 6
 3 7
% Switch from Depth_Position to index.
aln_ind = depo2ind(ord,aln_depo)
aln_ind =
 O
 1
 2
 3
 4
 5
 6
 7
 8
 1 3
 14
```

```
Purpose
 1-D detail coefficients
```

```
Syntax
```

Syntax
D = detcoef(C,L,N)
D = detcoef(C,L,N)
D = detcoef(C,L)

```
D = detcoef(C,L)
```

Examples
detcoef is a one-dimensional wavelet analysis function.
$D=\operatorname{detcoef}(C, L, N)$ extracts the detail coefficients at level $N$ from the wavelet decomposition structure [C,L]. See wavedec for more information on $C$ and $L$.
Level N must be an integer such that $1 \leq \mathrm{N} \leq$ NMAX where NMAX $=$ length (L)-2.
$D=\operatorname{detcoef}(C, L)$ extracts the detail coefficients at last level NMAX.
If $N$ is a vector of integers such that $1 \leq N(j) \leq$ NMAX:

- DCELL $=\operatorname{detcoef}(\mathrm{C}, \mathrm{L}, \mathrm{N}$, 'cells') returns a cell array where DCELL $\{\mathrm{j}\}$ contains the coefficients of detail $\mathrm{N}(\mathrm{j})$.
- If length $(N)>1$, $\operatorname{DCELL}=\operatorname{detcoef}(C, L, N)$ is equivalent to DCELL $=\operatorname{detcoef}(C, L, N, ' c e l l s ')$.
- DCELL = detcoef(C,L,'cells') is equivalent to DCELL $=\operatorname{detcoef}(\mathrm{C}, \mathrm{L},[1: \mathrm{NMAX}])$.
- [D1, ... ,Dp] = detcoef(C,L,[N(1), ... ,N(p)]) extracts the details coefficients at levels $[\mathrm{N}(1), \ldots, N(p)]$.
\% The current extension mode is zero-padding (see dwtmode).
\% Load original one-dimensional signal.
load leleccum;
s = leleccum(1:3920);
\% Perform decomposition at level 3 of $s$ using db1. [c,l] = wavedec(s,3,'db1');
\% Extract detail coefficients at levels
\% 1, 2 and 3, from wavelet decomposition

```
% structure [c,l].
[cd1,cd2,cd3] = detcoef(c,l,[[1 2 3]);
% Using some plotting commands,
% the following figure is generated.
```



Detall coet.level 1 : cal


See Also
appcoef | wavedec
Purpose2-D detail coefficients
Syntax D = detcoef2(0,C,S,N)

Tips

Examples
detcoef2 is a two-dimensional wavelet analysis function.
$D=\operatorname{detcoef} 2(0, C, S, N)$ extracts from the wavelet decomposition structure [ $\mathrm{C}, \mathrm{S}$ ] the horizontal, vertical, or diagonal detail coefficients for $0=$ 'h' (or 'v' or 'd', respectively), at level $N$, where $N$ must be an integer such that $1 \leq N \leq \operatorname{size}(S, 1)-2$. See wavedec2 for more information on C and S .
[H,V,D] = detcoef2('all', C, S,N) returns the horizontal H, vertical V , and diagonal D detail coefficients at level N .
D = detcoef2('compact', $\mathrm{C}, \mathrm{S}, \mathrm{N}$ ) returns the detail coefficients at level N , stored row-wise.
detcoef2('a', C, S,N) is equivalent to detcoef2('all', C, S, N). detcoef2('c', $\mathrm{C}, \mathrm{S}, \mathrm{N}$ ) is equivalent to detcoef2('compact', $\mathrm{C}, \mathrm{S}, \mathrm{N}$ ).

```
 sizex = size(X)
sizex =
 256 256
sizec = size(c)
sizec =
 1 65536
val_s = s
val_s =
 64 64
 64 64
 128 128
 256 256
% Extract details coefficients at level 2
% in each orientation, from wavelet decomposition
% structure [c,s].
[chd2,cvd2,cdd2] = detcoef2('all',c,s,2);
sizecd2 = size(chd2)
sizecd2 =
 64 64
% Extract details coefficients at level 1
% in each orientation, from wavelet decomposition
% structure [c,s].
[chd1,cvd1,cdd1] = detcoef2('all',c,s,1);
sizecd1 = size(chd1)
sizecd1 =
 128 128
```

See Also appcoef2 | wavedec2
Purpose WPTREE information
Syntax disp(T)
Description disp $(T)$ displays the content of the WPTREE object $T$.
Examples \% Compute a wavelet packets tree $x=r a n d(1,1000) ;$

t = wpdec(x,2,'db2');

disp(t)
Wavelet Packet Object Structure

| Size of initial data | : [11 1000] |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Order | : 2 |  |  |  |
| Depth | : 2 |  |  |  |
| Terminal nodes | : [3 4 5 | $6]$ |  |  |
| Wavelet Name | : db2 |  |  |  |
| Low Decomposition filter | : [-0.1294 | 0.2241 | 0.8365 | $0.483]$ |
| High Decomposition filter | : [ -0.483 | 0.8365 | -0.2241 | -0.1294] |
| Low Reconstruction filter | : [ 0.483 | 0.8365 | 0.2241 | -0.1294] |
| High Reconstruction filter | : [-0.1294 | -0.2241 | 0.8365 | -0.483] |

    Entropy Name : shannon
    Entropy Parameter : 0
    See Also
get | read | set | write

## displs

## Purpose Display lifting scheme

## Syntax $\quad S=\operatorname{displs}(L S, F R M)$

Description $\quad S=\operatorname{displs}(L S, F R M)$ returns a string describing the lifting scheme $L S$. The format string FRM (see sprintf) builds S .
displs(LS) is equivalent to DISPLS(LS,'\%12.8f)
For more information about lifting schemes, see lsinfo.
Examples

```
% Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');
% Visualize the obtained lifting scheme.
displs(lshaar);
lshaar = {...
'd' [-1.00000000] [0]
'p' [0.50000000] [0]
[1.41421356] [0.70710678] []
};
% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
displs(lsnew);
lsnew = {...
'd' [-1.00000000] [0]
'p' [0.50000000] [0]
'p' [-0.12500000 0.12500000] [0]
[1.41421356] [0.70710678] []
};
```

See Also lsinfo

Purpose
Draw wavelet packet decomposition tree (GUI)
Syntax
drawtree( $T$ )
F = drawtree( $T$ )
drawtree( $T, F$ )

## Description

## Examples

drawtree $(T)$ draws the wavelet packet tree $T$, and $\mathrm{F}=\operatorname{drawtree}(T)$ also returns the figure's handle.

For an existing figure F produced by a previous call to the drawtree function, drawtree ( $T, F$ ) draws the wavelet packet tree T in the figure whose handle is F .

```
x = sin(8*pi*[0:0.005:1]);
t = wpdec(x,3,'db2');
fig = drawtree(t);
```



## drawtree

```
%------------------------------------
% Use command line function to modify t.
%--------------------------------------
t = wpjoin(t,2);
drawtree(t,fig);
```



See Also
readtree

| Purpose | DTREE constructor |
| :---: | :---: |
| Syntax | ```T = dtree(ORD,D,X) T = dtree(ORD,D,X,U) [T,NB] = dtree(...) [T,NB] = dtree('PropName1',PropValue1,'PropName2',PropValue2, ...)``` |
| Description | $\mathrm{T}=\mathrm{dtree}(\mathrm{ORD}, \mathrm{D}, \mathrm{X})$ returns a complete data tree (DTREE) object of order ORD and depth $D$. The data associated with the tree $T$ is $X$. <br> With $T=$ dtree (ORD , $D, X, U$ ) you can set a user data field. <br> [ $\mathrm{T}, \mathrm{NB}]=$ dtree(...) returns also the number of terminal nodes (leaves) of $T$. $[\mathrm{T}, \mathrm{NB}]=$ <br> dtree('PropName1', PropValue1,'PropName2', PropValue2, ...) is the most general syntax to construct a DTREE object. |
|  | 'order' Order of the tree |
|  | 'depth ' Depth of the tree |
|  | 'data' Data associated to the tree |
|  | 'spsch ' Split scheme for nodes |
|  | 'ud' User data field |

The split scheme field is an order ORD by 1 logical array. The root of the tree can be split and it has ORD children. If $\operatorname{spsch}(\mathrm{j})=1$, you can split the j-th child. Each node that you can split has the same property as the root node.

For more information on object fields, type help dtree/get.

## Class DTREE (Parent class: NTREE)

## Fields

| dtree | Parent object |
| :--- | :--- |
| allNI | All nodes information |
| terNI | Terminal nodes information |

Examples $\quad$ \% Create a data tree. x = [1:10];<br>t = dtree (3,2,x);<br>$\mathrm{t}=$ nodejoin(t,2);

See Also ntree | wtbo

## Purpose

Single-level discrete 1-D wavelet transform

## Syntax

```
[cA,cD] = dwt(X,'wname')
[cA,cD] = dwt(X,Lo_D,Hi_D)
[cA,cD] = dwt(...,'mode',MODE)
```


## Description

The dwt command performs a single-level one-dimensional wavelet decomposition with respect to either a particular wavelet (' wname', see wfilters for more information) or particular wavelet decomposition filters (Lo_D and Hi_D) that you specify.
[cA, cD] = dwt(X,'wname') computes the approximation coefficients vector $C A$ and detail coefficients vector $C D$, obtained by a wavelet decomposition of the vector $X$. The string 'wname' contains the wavelet name.
[cA, CD] = dwt(X,Lo_D,Hi_D) computes the wavelet decomposition as above, given these filters as input:

- Lo_D is the decomposition low-pass filter.
- Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length.
Let $l x=$ the length of $X$ and $l f=$ the length of the filters Lo_D and Hi_D; then length $(C A)=$ length $(C D)=1 a$ where $l a=\operatorname{ceil}(l x / 2)$, if the DWT extension mode is set to periodization. For the other extension modes, $l a=$ floor $(l x+l f-1) / 2)$.
For more information about the different Discrete Wavelet Transform extension modes, see dwtmode.
[cA, cD] = dwt(...,'mode', MODE) computes the wavelet decomposition with the extension mode MODE that you specify. MODE is a string containing the desired extension mode.

Example:
[cA, cD] = dwt(x,'db1','mode','sym');

## Examples DWT Using Wavelet Name

Obtain the level-1 DWT of the noisy Doppler signal using a wavelet name.
load noisdopp;
[A,D] = dwt(noisdopp,'sym4');

## DWT Using Wavelet and Scaling Filters

Obtain the level-1 DWT of the noisy Doppler signal using wavelet and scaling filters.
load noisdopp;
[Lo_D,Hi_D] = wfilters('bior3.5','d'); [A,D] = dwt(noisdopp,Lo_D,Hi_D);

## Algorithms

Starting from a signal $s$, two sets of coefficients are computed: approximation coefficients $C A_{1}$, and detail coefficients $C D_{1}$. These vectors are obtained by convolving $s$ with the low-pass filter Lo_D for approximation and with the high-pass filter Hi_D for detail, followed by dyadic decimation.

More precisely, the first step is


The length of each filter is equal to $2 N$. If $n=$ length $(s)$, the signals $F$ and $G$ are of length $n+2 N-1$, and then the coefficients $C A_{1}$ and $C D_{1}$ are of length
floor $\left(\frac{n-1}{2}\right)+N$
To deal with signal-end effects involved by a convolution-based algorithm, a global variable managed by dwtmode is used. This variable defines the kind of signal extension mode used. The possible options include zero-padding (used in the previous example) and symmetric extension, which is the default mode.

Note For the same input, this dwt function and the DWT block in the Signal Processing Toolbox ${ }^{\text {TM }}$ do not produce the same results. The blockset is designed for real-time implementation while Wavelet Toolbox ${ }^{\mathrm{TM}}$ software is designed for analysis, so they produce handle boundary conditions and filter states differently.

To make the dwt function output match the DWT block output, set the function boundary condition to zero-padding by typing dwtmode('zpd') at the MATLAB ${ }^{\circledR}$ command prompt. To match the latency of the DWT block, which is implemented using FIR filters, add zeros to the input of the dwt function. The number of zeros you add must be equal to half the filter length.

References

See Also
dwtmode | idwt | wavedec | waveinfo

## Purpose <br> Single-level discrete 2-D wavelet transform

```
Syntax
[cA,cH,cV,cD] = dwt2(X,'wname')
[cA,cH,cV,cD] = dwt2(X,Lo_D,Hi_D)
[cA,cH,cV,cD] = dwt2(...,'mode',MODE)
```


## Description

The dwt2 command performs a single-level two-dimensional wavelet decomposition with respect to either a particular wavelet (' wname', see wfilters for more information) or particular wavelet decomposition filters (Lo_D and Hi_D) you specify.
[cA,cH,cV,cD] = dwt2(X,'wname') computes the approximation coefficients matrix cA and details coefficients matrices $\mathrm{cH}, \mathrm{cV}$, and cD (horizontal, vertical, and diagonal, respectively), obtained by wavelet decomposition of the input matrix $X$. The 'wname' string contains the wavelet name.
[cA,cH,cV,cD] = dwt2(X,Lo_D,Hi_D) computes the two-dimensional wavelet decomposition as above, based on wavelet decomposition filters that you specify.

- Lo_D is the decomposition low-pass filter.
- Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length.
Let $s x=\operatorname{size}(X)$ and $l f=$ the length of filters; then size(cA) $=$ size(cH) = size(cV) = size(cD) = sa where sa = ceil(sx/2), if the DWT extension mode is set to periodization. For the other extension modes, sa $=$ floor ((sx+lf-1)/2).

For information about the different Discrete Wavelet Transform extension modes, see dwtmode.
[cA, cH, cV, cD] = dwt2(...,'mode', MODE) computes the wavelet decomposition with the extension mode MODE that you specify.

MODE is a string containing the desired extension mode.
An example of valid use is

```
\([\mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}]=\mathrm{dwt2}\left(\mathrm{x}, \mathrm{\prime} \mathrm{db1} \mathrm{I}^{\prime}\right.\), 'mode', 'sym');
```

Tips

Examples

When X represents an indexed image, then X , as well as the output arrays $\mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}$ are m-by-n matrices. When X represents a truecolor image, it is an m-by-n-by-3 array, where each m-by-n matrix represents a red, green, or blue color plane concatenated along the third dimension.

For more information on image formats, see the image and imfinfo reference pages.

```
% The current extension mode is zero-padding (see dwtmode).
% Load original image.
load woman;
% X contains the loaded image.
% map contains the loaded colormap.
nbcol = size(map,1);
% Perform single-level decomposition
% of X using db1.
[cA1,cH1,cV1,cD1] = dwt2(X,'db1');
% Images coding.
cod_X = wcodemat(X,nbcol);
cod_cA1 = wcodemat(cA1,nbcol);
cod_cH1 = wcodemat(cH1,nbcol);
cod_cV1 = wcodemat(cV1,nbcol);
cod_cD1 = wcodemat(cD1,nbcol);
dec2d = [...
 cod_cA1, cod_cH1; ...
 cod_cV1, cod_cD1 ...
];
% Using some plotting commands,
% the following figure is generated.
```



Algorithms
For images, there exist an algorithm similar to the one-dimensional case for two-dimensional wavelets and scaling functions obtained from one- dimensional ones by tensorial product.

This kind of two-dimensional DWT leads to a decomposition of approximation coefficients at level $j$ in four components: the approximation at level $j+1$, and the details in three orientations (horizontal, vertical, and diagonal).

The following chart describes the basic decomposition steps for images:

## Two-Dimensional DWT



Where $2 \neq 1$ Downsample columns: keep the even indexed columns
1 $\downarrow 2$ Downsample rows: keep the even indexed rows
rows
X Convolve with filter X the rows of the entry
columns
X Convolve with filter X the columns of the entry
Initialization $C A_{0}=s$ for the decomposition initialization

Note To deal with signal-end effects involved by a convolution-based algorithm, a global variable managed by dwtmode is used. This variable defines the kind of signal extension mode used. The possible options include zero-padding (used in the previous example) and symmetric extension, which is the default mode.

## References

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed.

Mallat, S. (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674-693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also dwtmode | idwt2 | wavedec2 | waveinfo

## Purpose

Single-level discrete 3-D wavelet transform
Syntax
WT = dwt3(X,'wname')
WT = dwt3(X,'wname','mode','ExtM')
WT $=$ dwt3(X,W,...)
WT $=\operatorname{dwt3}(X, W F, \ldots)$
Description
dwt3 performs a single-level three-dimensional wavelet decomposition using either a particular wavelet ('wname ') or the wavelet decomposition and reconstruction filters you specify. The decomposition also uses the specified DWT extension mode (see dwtmode).

WT $=$ dwt3(X, 'wname') returns the 3-D wavelet transform of the 3-D array $X$. 'wname' is a string containing the wavelet name. The default extension mode is 'sym'. For more information on wname, see wfilters.

WT = dwt3(X,'wname','mode','ExtM') uses the extension mode 'ExtM'.

WT is a structure with the following fields shown in the table.

| sizeINI | Size of the three-dimensional array X. |
| :--- | :--- |
| mode | Name of the wavelet transform extension mode. |
| filters | Structure with four fields: LoD, HiD, LoR, HiR, <br> which are the filters used for DWT. |
| dec | $2 \times 2 \times 2$ cell array containing the coefficients of <br> the decomposition. <br> dec $\{i, j, k\}, i, j, k=1$ or 2 contains the <br> coefficients obtained by low-pass filtering (for i <br> or jor $k=1$ ) or high-pass filtering (for i or jor <br> $k=2)$ |

WT $=\operatorname{dwt3}(\mathrm{X}, \mathrm{W}, \ldots)$ specify three wavelets, one for each direction. $\mathrm{W}=$ \{'wname1', 'wname2', 'wname3'\} or W is a structure with 3 fields 'w1', 'w2 ', 'w3' containing strings that are the names of wavelets.

```
WT = dwt3(X,WF,\ldots..) specify four filters, two for decomposition, and
two for reconstructionm or 3 x 4 filters (one quadruplet by direction).
WF is either a cell array (1 x 4) or (}3\times4\mathrm{) : {LoD,HiD,LoR,HiR} or a
structure with the four fields 'LoD','HiD','LoR','HiR'.
```


## Examples

| 1 | 5 | 9 | 13 |
| ---: | ---: | ---: | ---: |
| 2 | 6 | 10 | 14 |
| 3 | 7 | 11 | 15 |
| 4 | 8 | 12 | 16 |


| 17 | 21 | 25 | 29 |
| :--- | :--- | :--- | :--- |
| 18 | 22 | 26 | 30 |
| 19 | 23 | 27 | 31 |
| 20 | 24 | 28 | 32 |

```
% Define the original 3-D data.
```

% Define the original 3-D data.
X = reshape(1:64,4,4,4)
X = reshape(1:64,4,4,4)
X(:,:,1) =
X(:,:,1) =
X(:,:,2) =
X(:,:,2) =
X(:,:,3) =
X(:,:,3) =
33 37 41 45
33 37 41 45
34 38 42 46
34 38 42 46
35
35
36 40 44 48
36 40 44 48
X(:,:,4) =
X(:,:,4) =
49 53 57 61
49 53 57 61
50 54 58 62
50 54 58 62
51 55 59 63
51 55 59 63
52 56 60 64
52 56 60 64
% Perform single level decomposition of X using db1.

```
% Perform single level decomposition of X using db1.
```

```
wt = dwt3(X,'db1')
wt =
 sizeINI: [4 4 4]
 filters: [1x1 struct]
 mode: 'sym'
 dec: {2x2x2 cell}
% Decompose X using db2.
[LoD,HiD,LoR,HiR] = wfilters('db2');
wt = dwt3(X,{LoD,HiD,LoR,HiR})
wt =
 sizeINI: [4 4 4]
 filters: [1x1 struct]
 mode: 'sym'
 dec: {2x2x2 cell}
% Decompose X using different wavelets, one for
% each orientation (db1, db2 and again db1).
WS = struct('w1','db1','w2','db2','w3','db1');
wt = dwt3(X,WS,'mode','per')
wt =
 sizeINI: [4 4 4]
 filters: [1x1 struct]
 mode: 'per'
 dec: {2x2x2 cell}
WF = wt.filters;
% Decompose X using the filters given by WF and
% set the extension mode to symmetric.
```

```
wtBIS = dwt3(X,WF,'mode','sym')
wtBIS =
 sizeINI: [4 4 4]
 filters: [1x1 struct]
 mode: 'sym'
 dec: {2x2x2 cell}
```

See Also
dwtmode | idwt3 | wavedec3 | waverec3 | waveinfo | wfilters

## Purpose

Discrete wavelet transform extension mode
Syntax
ST = dwtmode
ST = dwtmode('status')
dwtmode('mode')

## Description

The dwtmode command sets the signal or image extension mode for discrete wavelet and wavelet packet transforms. The extension modes represent different ways of handling the problem of border distortion in signal and image analysis. For more information, see "Border Effects", in the User's Guide.
dwtmode or dwtmode('status') display the current mode.
ST = dwtmode or ST = dwtmode('status') display and returns in ST the current mode.

ST = dwtmode('status', 'nodisp') returns in ST the current mode and no text (status or warning) is displayed in the MATLAB Command Window.
dwtmode('mode') sets the DWT extension mode according to the value of 'mode':

| 'mode' | DWT Extension Mode |
| :--- | :--- |
| 'sym' or 'symn' | Symmetric-padding (half-point): <br> boundary value symmetric replication <br> - default mode |
| 'symw' | Symmetric-padding (whole-point): <br> boundary value symmetric replication |
| 'asym' or 'asymh' | Antisymmetric-padding (half-point): <br> boundary value antisymmetric <br> replication |
| 'asymw' | Antisymmetric-padding (whole-point): <br> boundary value antisymmetric <br> replication |

## dwtmode

| 'mode' | DWT Extension Mode |
| :--- | :--- |
| 'zpd' | Zero-padding |
| 'spd ' or 'sp1' | Smooth-padding of order 1 (first <br> derivative interpolation at the edges) |
| 'sp0' | Smooth-padding of order 0 (constant <br> extension at the edges) |
| 'ppd' | Periodic-padding (periodic extension at <br> the edges) |

For more information on symmetric extension modes see "References".
The DWT associated with these five modes is slightly redundant. But, the IDWT ensures a perfect reconstruction for any of the five previous modes whatever is the extension mode used for DWT.
dwtmode('per') sets the DWT mode to periodization.
This mode produces the smallest length wavelet decomposition. But, the extension mode used for IDWT must be the same to ensure a perfect reconstruction.

Using this mode, dwt and dwt2 produce the same results as the obsolete functions dwtper and dwtper2, respectively.

All functions and GUI tools involving the DWT (1-D \& 2-D) or Wavelet Packet transform (1-D \& 2-D) use the specified DWT extension mode. dwtmode updates a global variable allowing the use of these six signal extensions. The extension mode should only be changed using this function. Avoid changing the global variable directly.

The default mode is loaded from the file DWTMODE. DEF (in the current path) if it exists. If not, the file DWTMODE.CFG (in the toolbox/wavelet/wavelet folder) is used.
dwtmode('save', MODE) saves MODE as the new default mode in the file DWTMODE. DEF (in the current folder). If a file with the same name already exists in the current folder, it is deleted before saving.
dwtmode('save') is equivalent to dwtmode('save', CURRENTMODE).
In these last two cases, the new default mode saved in the file DWTMODE. DEF will be active as default mode in the next MATLAB session.

## Examples

```
% If the DWT extension mode global variable does not
% exist, default is Symmetrization.
clear global
dwtmode
** DWT Extension Mode: Symmetrization **
**
% Display current DWT signal extension mode.
dwtmode

** DWT Extension Mode: Symmetrization **

% Change to Periodization extension mode.
dwtmode('per')
```

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! WARNING: Change DWT Extension Mode !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$
******************************************
\% Display current DWT signal extension mode.
dwtmode
***************************************
** DWT Extension Mode: Periodization **

Note You should change the extension mode only by using dwtmode. Avoid changing the global variable directly.

References Strang, G.; T. Nguyen (1996), Wavelets and filter banks, WellesleyCambridge Press.

## See Also

idwt | idwt2 | dwt | dwt2 | wextend

## Purpose Dyadic downsampling

Syntax $\quad Y=$ dyaddown (X, EVENODD)
$Y=$ dyaddown(X)
Y = dyaddown(X,EVENODD,'type')
Y = dyaddown(X,'type',EVENODD)
$Y=$ dyaddown(X)
$\mathrm{Y}=$ dyaddown $(\mathrm{X}$, 'type')
Y = dyaddown(X,0,'type')
Y = dyaddown (X,EVENODD)
Y = dyaddown(X,EVENODD,'c')

## Description

$Y=$ dyaddown (X, EVENODD) where $X$ is a vector, returns a version of $X$ that has been downsampled by 2 . Whether $Y$ contains the even- or odd-indexed samples of $X$ depends on the value of positive integer EVENODD:

- If EVENODD is even, then $Y(k)=X(2 k)$.
- If EVENODD is odd, then $Y(k)=X(2 k+1)$.
$Y=$ dyaddown $(X)$ is equivalent to $Y=$ dyaddown $(X, 0)$ (even-indexed samples).
$\mathrm{Y}=$ dyaddown (X,EVENODD, 'type') or $\mathrm{Y}=$
dyaddown ( X , 'type' ${ }^{\text {, EVENODD }), ~ w h e r e ~} X$ is a matrix, returns a version of $X$ obtained by suppressing one out of two:


## Columns of $x$

Rows of $x$
Rows and columns of $x$

$$
\begin{aligned}
& \text { If 'type' }=\text { 'c' } \\
& \text { If 'type' }=~ ' r ' \\
& \text { If 'type' }=~ ' m ' ~
\end{aligned}
$$

according to the parameter EVENODD, which is as above.
If you omit the EVENODD or 'type' arguments, dyaddown defaults to EVENODD $=0$ (even-indexed samples) and 'type' = 'c' (columns).
$Y=$ dyaddown $(X)$ is equivalent to $Y=$ dyaddown $\left(X, 0, c^{\prime}\right)$.
$Y=$ dyaddown $(X$, 'type' $)$ is equivalent to $Y=$ dyaddown $(X, 0$, 'type' $)$.

```
Y = dyaddown(X,EVENODD) is equivalent to Y =
dyaddown(X,EVENODD, 'c').
```


## Examples

```
% For a vector.
s = 1:10
S =
 1
dse = dyaddown(s) % Downsample elements with even indices.
dse =
 2 4 6 8 10
% or equivalently
dse = dyaddown(s,0)
dse =
 2 4 6 % 8 10
dso = dyaddown(s,1) % Downsample elements with odd indices.
dso =
 1 3 5 7 7 9
% For a matrix.
s = (1:3)'*(1:4)
s =
 1 2 3 4
 2 4 6 8
 3 6 9 12
dec = dyaddown(s,O,'c') % Downsample columns with even indices.
dec =
 24
 4
 6 12
der = dyaddown(s,1,'r') % Downsample rows with odd indices.
der =
 1 2 3 4
 3 6 9 12
```

```
dem = dyaddown(s,1,'m') % Downsample rows and columns
 % with odd indices.
dem =
 3
 3 9
```

References $\begin{aligned} & \text { Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, } \\ & \text { Wellesley-Cambridge Press. }\end{aligned}$
See Also dyadup

Purpose Dyadic upsampling

```
Syntax }\quadY=\operatorname{dyadup}(X,EVENODD
Y = dyadup(X)
Y = dyadup(X,EVENODD,'type')
Y = dyadup(X,'type',EVENODD)
Y = dyadup(X)
Y = dyaddown(X,1,'c')
Y = dyadup(X,'type')
Y = dyadup(X,1,'type')
Y = dyadup(X,EVENODD)
Y = dyadup(X,EVENODD,'c')
```


## Description

dyadup implements a simple zero-padding scheme very useful in the wavelet reconstruction algorithm.
$Y$ = dyadup (X, EVENODD), where $X$ is a vector, returns an extended copy of vector $X$ obtained by inserting zeros. Whether the zeros are inserted as even- or odd-indexed elements of $Y$ depends on the value of positive integer EVENODD:

- If EVENODD is even, then $Y(2 k 1)=X(k), Y(2 k)=0$.
- If EVENODD is odd, then $\mathrm{Y}(2 \mathrm{k} 1)=0, \mathrm{Y}(2 \mathrm{k})=\mathrm{X}(\mathrm{k})$.
$Y=$ dyadup $(X)$ is equivalent to $Y=$ dyadup $(X, 1)$ (odd-indexed samples).

Y = dyadup (X,EVENODD, 'type') or Y = dyadup (X,'type',EVENODD), where $X$ is a matrix, returns extended copies of $X$ obtained by inserting

| Columns in $X$ | If 'type' $=' \mathrm{c}$ ' |
| :--- | :--- |
| Rows in $X$ | If 'type' $=' \mathrm{r}$ ' |
| Rows and columns in $X$ | If 'type' $=' \mathrm{~m}$ ' |

according to the parameter EVENODD, which is as above.

If you omit the EVENODD or 'type' arguments, dyadup defaults to EVENODD $=1$ (zeros in odd-indexed positions) and 'type' $=$ ' c ' (insert columns).
$Y=$ dyadup $(X)$ is equivalent to $Y=$ dyaddown $\left(X, 1,{ }^{\prime} c^{\prime}\right)$.
$Y=\operatorname{dyadup}(X, ' t y p e ')$ is equivalent to $Y=\operatorname{dyadup}(X, 1$, 'type').
$Y=$ dyadup $(X, E V E N O D D)$ is equivalent to $Y=\operatorname{dyadup}\left(X, E V E N O D D, c^{\prime}\right)$.

## Examples

```
% For a vector.
s = 1:5
s =
 12345
```

dse = dyadup(s) \% Upsample elements at odd indices.
dse $=$
01020304050
\% or equivalently
dse $=$ dyadup( $\mathrm{s}, 1$ )
dse =
01020304050
dso = dyadup(s,0) \% Upsample elements at even indices.
dso =
102030405
\% For a matrix.
$s=(1: 2)^{\prime *}(1: 3)$
s $=$
123
246
der = dyadup(s,1,'r') \% Upsample rows at even indices.
der $=$
000
123
000

```
 246
 00
doc = dyadup(s,O,'c') % Upsample columns at odd indices.
doc =
 1020 3
 20406
dem = dyadup(s,1,'m') % Upsample rows and columns
 % at even indices.
dem =
\begin{tabular}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 4 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}
% Using default values for dyadup and dyaddown, we have:
% dyaddown(dyadup(s)) = s.
s = 1:5
S =
 12345
uds = dyaddown(dyadup(s))
uds =
 12345
% In general reversed identity is false.
```

Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge Press.

## References

See Also

```
Purpose Entropy update (wavelet packet)
Syntax T = entrupd(T,ENT)
T = entrupd(T,ENT,PAR)
```


## Description <br> entrupd is a one- or two-dimensional wavelet packet utility.

```
\(\mathrm{T}=\) entrupd \((T, E N T)\) or \(\mathrm{T}=\) entrupd \((T, E N T, P A R)\) returns for a given wavelet packet tree \(T\), the updated tree using the entropy function ENT with the optional parameter PAR (see wenergy for more information).
Examples \(\quad\) \% The current extension mode is zero-padding (see dwtmode).
\% Load signal.
load noisdopp; x = noisdopp;
\% Decompose x at depth 2 with db1 wavelet packets
\% using shannon entropy.
t = wpdec(x,2,'db1','shannon');
\% Read entropy of all the nodes. nodes = allnodes(t);
ent = read(t,'ent',nodes);
ent'
ent =
 1.0e+04 *
 -5.8615 -6.8204 -0.0350 -7.7901 -0.0497 -0.0205 -0.0138
% Update nodes entropy.
t = entrupd(t,'threshold',0.5);
nent = read(t,'ent');
nent'
nent =
 937 488 320 241 175 170 163
See Also wenergy | wpdec | wpdec2
```


## fbspwavf

Purpose Complex frequency B-spline wavelet

## Syntax $\quad[P S I, X]=$ fbspwavf(LB $, U B, N, M, F B, F C)$

Description $\quad[P S I, X]=$ fbspwavf(LB, UB, $N, M, F B, F C)$ returns values of the complex frequency B-Spline wavelet defined by the order parameter $M$ ( $M$ is an integer such that $1 \leq M$ ), a bandwidth parameter $F B$, and a wavelet center frequency $F C$.

The function PSI is computed using the explicit expression

```
PSI(X) = (FB^0.5)*((sinc(FB*X/M).^M).*exp(2*i*pi*FC*X))
```

on an $N$ point regular grid in the interval [LB, UB].
$F B$ and $F C$ must be such that FC > 0 and $>F B>0$.
Output arguments are the wavelet function PSI computed on the grid $X$.

## Examples

```
% Set order, bandwidth and center frequency parameters.
m = 2; fb = 0.5; fc = 1;
% Set effective support and grid parameters.
lb = -20; ub = 20; n = 1000;
% Compute complex Frequency B-Spline wavelet fbsp2-0.5-1.
[psi,x] = fbspwavf(lb,ub,n,m,fb,fc);
% Plot complex Frequency B-Spline wavelet.
subplot(211)
plot(x,real(psi))
title('Complex Frequency B-Spline wavelet fbsp2-0.5-1')
xlabel('Real part'), grid
subplot(212)
plot(x,imag(psi))
xlabel('Imaginary part'), grid
```



## References Teolis, A. (1998), Computational signal processing with wavelets, Birkhauser, p. 63.

See Also
waveinfo

## filt2ls

Purpose Transform quadruplet of filters to lifting scheme

```
Syntax LS = filt2ls(LoD,HiD,LoR,HiR)
```

Description LS = filt2ls(LoD,HiD,LoR,HiR) returns the lifting scheme LS associated with the four input filters LoD, HiD, LoR, and HiR that verify the perfect reconstruction condition.

## Examples

```
[LoD,HiD,LoR,HiR] = wfilters('db2')
LoD =
 -0.1294 0.2241 0.8365 0.4830
HiD =
 -0.4830 0.8365 -0.2241 -0.1294
LoR =
 0.4830 0.8365 0.2241 -0.1294
HiR =
 -0.1294 -0.2241 0.8365 -0.4830
LS = filt2ls(LoD,HiD,LoR,HiR);
displs(LS);
LS = {...
'd' [-1.73205081] [0]
'p' [-0.06698730 0.43301270] [1]
'd' [1.00000000] [-1]
[1.93185165] [0.51763809] []
};
```

```
LSref = liftwave('db2');
displs(LSref);
LSref = {...
'd' [[-1.73205081]
'd' [1.00000000] [-1]
[1.93185165] [0.51763809] []
};
```


## See Also ls2filt | lsinfo

## Purpose Gaussian wavelet

```
Syntax
[PSI,X] = gauswavf(LB,UB,N,P)
[PSI,X] = gauswavf(LB,UB,N)
[PSI,X] = gauswavf(LB,UB,N,1)
```


## Description

$[P S I, X]=$ gauswavf(LB $, \mathrm{UB}, \mathrm{N}, \mathrm{P})$ returns values of the $P$-th derivative of the Gaussian function on an $N$ point regular grid for the interval [LB , UB]. $C p$ is such that the 2 -norm of the $P$-th derivative of $F$ is equal to 1 .

For P > 8, Symbolic Math Toolbox software is required.
Output arguments are the wavelet function PSI computed on the grid X .
$[P S I, X]=$ gauswavf( $\mathrm{LB}, \mathrm{UB}, \mathrm{N}$ ) is equivalent to
[PSI, X] = gauswavf(LB, UB, N, 1).
These wavelets have an effective support of [-5 5].

## Examples

```
% Set effective support and grid parameters.
lb = -5; ub = 5; n = 1000;
% Compute Gaussian wavelet of order 8.
[psi,x] = gauswavf(lb,ub,n,8);
% Plot Gaussian wavelet of order 8.
plot(x,psi),
title('Gaussian wavelet of order 8'), grid
```



See Also
waveinfo

## Purpose WPTREE contents

```
Syntax
[FieldValue1,FieldValue2, ...] = get(T,'FieldName1',
 'FieldName2', ...)
[FieldValue1,FieldValue2, ...] = get(T)
```


## Description

[FieldValue1,FieldValue2, ...] =
get(T,'FieldName1','FieldName2', ...) returns the content of the specified fields for the WPTREE object T.

For the fields that are objects or structures, you can get the subfield contents, giving the name of these subfields as 'FieldName' values. (See "Examples" below.)
[FieldValue1,FieldValue2, ...] = get( $T$ ) returns all the field contents of the tree $T$.

The valid choices for 'FieldName' are

| 'dtree ' | DTREE parent object |
| :--- | :--- |
| 'wavInfo' | Structure (wavelet information) |

The fields of the wavelet information structure, 'wavInfo', are also valid for 'FieldName':

| 'wavName ' | Wavelet name |
| :--- | :--- |
| 'Lo_D' | Low Decomposition filter |
| 'Hi_D' | High Decomposition filter |
| 'Lo_R' | Low Reconstruction filter |
| 'Hi_R' | High Reconstruction filter |
|  |  |
| 'entInfo' | Structure (entropy information) |

The fields of the entropy information structure, 'entInfo', are also valid for 'FieldName':

| 'entName' | Entropy name |
| :--- | :--- |
| 'entPar' | Entropy parameter |

Or fields of DTREE parent object:
'ntree' NTREE parent object
'allNI ' All nodes information
'terNI ' Terminal nodes information

Or fields of NTREE parent object:

| 'wtbo' | WTBO parent object |
| :--- | :--- |
| 'order' | Order of the tree |
| 'depth' | Depth of the tree |
| 'spsch' | Split scheme for nodes |
| 'tn' | Array of terminal nodes of the tree |

Or fields of WTBO parent object:

| 'wtboInfo' | Object information |
| :--- | :--- |
| 'ud' | Userdata field |

Examples \% Compute a wavelet packets tree
$x=\operatorname{rand}(1,1000)$;
t = wpdec(x,2,'db2');

```
o = get(t,'order');
[o,tn] = get(t,'order','tn');
[o,allNI,tn] = get(t,'order','allNI','tn');
[o,wavInfo,allNI,tn] = get(t,'order','wavInfo','allNI','tn');
[0,tn,Lo_D,EntName] = get(t,'order','tn','Lo_D','EntName');
[wo,nt,dt] = get(t,'wtbo','ntree','dtree');
```

See Also disp | read | set | write
Purpose Inverse CWT
Syntax

xrec = icwtft(cwtstruct)

xrec = icwtft(cwtstruct,'plot')

xrec = icwtft(cwtstruct,'signal',SIG,'plot')

## Description

## Input Arguments

## Output Arguments

xrec = icwtft(cwtstruct) returns the inverse continuous wavelet transform of the CWT coefficients contained in the cfs field of the structure array cwtstruct. Obtain the structure array cwtstruct as the output of cwtft.
xrec = icwtft(cwtstruct,'plot') plots the reconstructed signal.
xrec = icwtft(cwtstruct,'signal',SIG,'plot') places a radio button in the bottom left corner of the plot. Enabling the radio button superimposes the plot of the input signal SIG on the plot of the reconstructed signal. By default the radio button is not enabled and only the reconstructed signal is plotted.

## cwtstruct

Structure array containing six fields.

- dt - The sampling period
- cfs - CWT coefficient matrix
- scales - Vector of scales
- wav - Analyzing wavelet used in the CWT
- omega - Angular frequencies used in the Fourier transform
- meanSig - Mean of the analyzed signal
cwtstruct is the output of cwtft.


## xrec

Reconstructed signal

## Definitions Inverse CWT

icwtft computes the inverse CWT based on a discretized version of the single integral formula due to Morlet. The Wavelet Toolbox Getting Started Guide contains a brief description of the theoretical foundation for the single integral formula in "Inverse Continuous Wavelet Transform". The discretized version of this integral is presented in [5]

## Examples

Compute the CWT and inverse CWT of two sinusoids with disjoint support.

```
N = 1024;
t = linspace(0,1,N);
y = sin(2*pi*8*t).*(t<=0.5)+sin(2*pi*16*t).*(t>0.5);
dt = 0.05;
s0 = 2*dt;
ds = 0.4875;
NbSc = 20;
wname = 'morl';
sig = {y,dt};
sca = {sO,ds,NbSc};
wave = {wname,[]};
cwtsig = cwtft(sig,'scales',sca,'wavelet',wave);
% Compute inverse CWT and plot reconstructed signal with original
sigrec = icwtft(cwtsig,'signal',sig,'plot');
```

Select the radio button in the bottom left corner of the plot.


Use the inverse CWT to approximate a trend in a time series. Construct a time series consisting of a polynomial trend, a sinewave (oscillatory component), and additive white Gaussian noise. Obtain the CWT of the input signal and use the inverse CWT based on only the coarsest scales to reconstruct an approximation to the trend. To obtain an accurate approximation based on select scales use the default power of two spacing for the scales in the continuous wavelet transform. See cwtft for details.

```
t = linspace(0,1,1e3);
% Polynomial trend
x = t.^3-t.^2;
% Periodic term
x1 = 0.25*cos(2*pi*250*t);
% Reset random number generator for reproducible results
rng default
y = x+x1+0.1*randn(size(t));
```

```
% Obtain CWT of input time series
cwty = cwtft({y,0.001},'wavelet','morl');
% Zero out all but the coarsest scale CWT coefficients
cwty.cfs(1:16,:) = 0;
% Reconstruct a signal approximation based on the coarsest scales
xrec = icwtft(cwty);
plot(t,y,'k'); hold on;
xlabel('Seconds'); ylabel('Amplitude');
plot(t,x,'b','linewidth',2);
plot(t,xrec,'r','linewidth',2);
legend('Original Signal','Polynomial Trend','Inverse CWT Approximation');
figure
plot(t,x,'b'); hold on;
xlabel('Seconds'); ylabel('Amplitude');
plot(t,xrec,'r','linewidth',2);
legend('Polynomial Trend','Inverse CWT Approximation');
```




You can also use the following syntax to plot the approximation. Select the radio button to view the original polynomial trend superimposed on the wavelet approximation.

```
% Input the polynomial trend as the value of 'signal'
xrec = icwtft(cwty,'signal',x,'plot');
```



## References

See Also
[1] Daubechies, I. Ten Lectures on Wavelets, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1992.
[2] Farge, M. "Wavelet Transforms and Their Application to Turbulence", Ann. Rev. Fluid. Mech., 1992, 24, 395-457.
[3] Mallat, S. A Wavelet Tour of Signal Processing, San Diego, CA: Academic Press, 1998.
[4] Sun,W. "Convergence of Morlet's Reconstruction Formula", preprint, 2010.
[5] Torrence, C. and G.P. Compo "A Practical Guide to Wavelet Analysis", Bull. Am. Meteorol. Soc., 79, 61-78, 1998.
cwt | cwtft

## How To

- "Continuous Wavelet Transform"
- "DFT-Based Continuous Wavelet Transform"
- "Inverse Continuous Wavelet Transform"

Purpose
Inverse continuous wavelet transform (CWT) for linearly spaced scales

Syntax<br>\section*{Description}

xrec $=$ icwtlin(cwtstruct)
xrec $=$ icwtlin(wav, meanSIG, cfs, scales, dt)
xrec $=$ icwtin(...,'plot')
xrec $=$ icwtlin (...,'signal',SIG,'plot')
xrec $=$ icwtlin(...,Name, Value)
xrec = icwtlin(cwtstruct) returns the inverse continuous wavelet transform (CWT) of the CWT coefficients obtained at linearly-spaced scales.

Note To use icwtlin you must:

- Use linearly-spaced scales in the CWT. icwtlin does not verify that the scales are linearly-spaced.
- Use one of the supported wavelets. See "Input Arguments" on page 1-149 for a list of supported wavelets.
xrec = icwtlin(wav, meanSIG, cfs, scales, dt) returns the inverse CWT of the coefficients in cfs. The inverse CWT is obtained using the wavelet wav, the linearly spaced scales scales, the sampling period dt , and the mean signal value meanSig.
xrec $=$ icwtin(...,'plot') plots the reconstructed signal xrec along with the CWT coefficients and CWT moduli. If the analyzing wavelet is complex-valued, the plot includes the real and imaginary parts of the CWT coefficients.
xrec $=$ icwtlin (...,'signal',SIG,'plot') places a radio button in the bottom-left corner of the plot. Enabling the radio button superimposes the plot of the input signal SIG on the plot of the reconstructed signal. SIG can be a structure array, a cell array, or a vector. If SIG is a structure array, there must be two fields: val and period. The val field contains the signal and the period field contains
the sampling period. If SIG is a cell array, SIG\{1\} contains the signal and $\operatorname{SIG}\{2\}$ is the sampling period.
xrec $=$ icwtlin(..., Name, Value) returns the inverse CWT transform with additional options specified by one or more Name, Value pair arguments.


## Input Arguments

## cwtstruct

A structure array that is the output of cwtft or constructed from the output of cwt. If you obtain cwtstruct from cwtft, the structure array contains six fields:

- cfs - CWT coefficient matrix
- scales - Vector of linearly spaced scales. The scale vector must be linearly-spaced to ensure accurate reconstruction. icwtlin does not check that the spacing of your scale vector is linear.
- wav - Analyzing wavelet. icwtlin uses this wavelet as the reconstruction wavelet. The supported wavelets are:
- 'dog' - An $m$-th order derivative of Gaussian wavelet where $m$ is a positive even integer
- 'morl' - Analytic Morlet wavelet
- 'morlex' - Nonanalytic Morlet wavelet
- 'morl0' - Nonanalytic Morlet wavelet with exact zero mean
- 'mexh' - Mexican-hat wavelet. This argument represents a special case of the derivative of Gaussian wavelet with $m=2$.
- 'paul' - Paul wavelet
- omega - Angular frequencies used in the Fourier transform in radians/sample
- MeanSIG - Signal mean
- dt - Sampling period in seconds

If you create cwtstruct from the output of cwt, cwtstruct contains all of the preceding fields except omega.
Using cwt to obtain the CWT coefficients, the valid analyzing wavelets are:

- Coiflets - 'coif1','coif2', 'coif3', 'coif4', 'coif5'
- Biorthogonal wavelets - 'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8', 'bior4.4', 'bior5.5', bior6.8
- Reverse biorthogonal wavelets - 'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8', 'rbio4.4', 'rbio5.5', 'rbio6.8'
- Complex Gaussian wavelets - 'cgau2', 'cgau4', 'cgau6', 'cgau8'


## Name-Value Pair Arguments

## 'IdxSc'

Vector of scales to use in the signal reconstruction. Specifying a subset of scales results in a scale-localized approximation of the analyzed signal.

## Output Arguments

## xrec

Reconstructed signal. Signal approximation based on the input CWT coefficient matrix, analyzing wavelet, selected scales, and sampling period.

The purpose of the CWT inversion algorithm is not to produce a perfect reconstruction of the input signal. The inversion preserves time and scale-localized features in the reconstructed signal. The amplitude scaling in the reconstructed signal, however, can be significantly different. This difference in scaling can occur whether or not you use all the CWT coefficients in the inversion.

Examples Compute the inverse CWT of a sum of sine waves with disjoint support.

```
% Define the signal
N = 100;
```

```
t = linspace(0,1,N);
Y = sin(8*pi*t).*(t<=0.5) + sin(16*pi*t).*(t>0.5) ;
% Define parameters before analysis
dt = 0.001;
maxsca = 1; s0 = 2*dt; ds = 2*dt;
scales = s0:ds:maxsca;
wname = 'morl';
SIG = {Y,dt};
WAV = {wname,[]};
\% Compute the CWT using cwtft with linear scales cwtS = cwtft(SIG,'scales',scales,'wavelet', WAV); \% Compute inverse CWT using linear scales Yrec = icwtlin(cwtS,'Signal',Y,'plot');
```



Reconstruct an approximation to a noisy Doppler signal based on thresholded coefficients. Use the universal threshold. Assume the sampling period is 0.05 seconds.

```
load noisdopp;
Y = noisdopp;
N = length(Y);
% Define parameters before analysis
% Assume sampling period is 0.05
dt = 0.05;
maxsca = 100; s0 = 2*dt; ds = 4*dt;
scales = s0:ds:maxsca;
wname = 'morl';
SIG = {Y,dt};
WAV = {wname,[]};
```

\% Compute CWT
cwtS = cwtft(SIG,'scales',scales,'wavelet',WAV,'plot');
\% Select subset of coefficients
cwtS1 = cwtS;
Hfreq = cwtS.cfs(1:10,:);
\% Set threshold
thr $=\operatorname{sqrt}(2 * \log (N)) *$ median(abs(Hfreq(:)))/0.6745;
newCFS = cwtS.cfs;
\% Set coefficients smaller than threshold in absolute value to 0
newCFS(abs(newCFS) <thr) = 0;
cwtS1.cfs = newCFS;
\% Reconstruction from the modified structure
YRDen = icwtlin(cwtS1, 'signal', Y, 'plot');

Enable the Reconstructed Signal On/Off radio button in the bottom-left corner.


## Algorithms

References

See [4] for a description of the inverse CWT algorithm for linearly spaced scales. The icwtlin function uses heuristic scaling factors for the analyzing wavelets. These scaling factors can result in significant differences in the amplitude scaling of the reconstructed signal.
[1] Daubechies, I. Ten Lectures on Wavelets, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1992.
[2] Farge, M. "Wavelet Transforms and Their Application to Turbulence", Ann. Rev. Fluid. Mech., 1992, 24, 395-457.
[3] Mallat, S. A Wavelet Tour of Signal Processing, San Diego, CA: Academic Press, 1998.
[4] Sun,W. "Convergence of Morlet's Reconstruction Formula", preprint, 2010.
[5] Torrence, C. and G.P. Compo. "A Practical Guide to Wavelet Analysis", Bull. Am. Meteorol. Soc., 79, 61-78, 1998.

# Alternatives - icwtft - Computes the inverse for the CWT obtained using cwtft with logarithmically spaced scales. If you use linearly spaced scales in cwtft, or you obtain the CWT with cwt, use icwtlin to compute the inverse. 

## See Also icwtft | cwtft | cwt

How To

- "Continuous Wavelet Transform"
- "DFT-Based Continuous Wavelet Transform"
- "Inverse Continuous Wavelet Transform"


## Purpose

Single-level inverse discrete 1-D wavelet transform
Syntax

```
X = idwt(cA,cD,'wname')
X = idwt(cA,cD,Lo_R,Hi_R)
X = idwt(cA,cD,'wname',L)
X = idwt(cA,cD,Lo_R,Hi_R,L)
idwt(cA,cD,'wname')
X = idwt(...,'mode',MODE)
X = idwt(cA,[],...)
X = idwt([],cD,...)
idwt(dwt(X,'wname'),'wname')
```


## Description

The idwt command performs a single-level one-dimensional wavelet
reconstruction with respect to either a particular wavelet ('wname', see wfilters for more information) or particular wavelet reconstruction filters (Lo_R and Hi_R) that you specify.

X = idwt (cA,cD,'wname') returns the single-level reconstructed approximation coefficients vector X based on approximation and detail coefficients vectors $C A$ and $C D$, and using the wavelet 'wname'.
X = idwt(CA, CD,Lo_R,Hi_R) reconstructs as above using filters that you specify.

- Lo_R is the reconstruction low-pass filter.
- Hi_R is the reconstruction high-pass filter.

Lo_R and Hi_R must be the same length.
Let la be the length of $c A$ (which also equals the length of $C D$ ) and lf the length of the filters Lo_R and Hi_R; then length $(X)=L X$ where LX $=2 * l a$ if the DWT extension mode is set to periodization. For the other extension modes LX $=2 * l a-l f+2$.

For more information about the different Discrete Wavelet Transform extension modes, see dwtmode.

X = idwt(cA, cD,'wname', L) or X = idwt(cA, CD,Lo_R,Hi_R,L) returns the length-L central portion of the result obtained using idwt (cA, CD, 'wname'). L must be less than LX.

X = idwt(...,'mode', MODE) computes the wavelet reconstruction using the specified extension mode MODE.
$\mathrm{X}=\mathrm{idwt}(\mathrm{cA},[], \ldots$ ) returns the single-level reconstructed approximation coefficients vector $X$ based on approximation coefficients vector cA.

X = idwt([],cD, ...) returns the single-level reconstructed detail coefficients vector $X$ based on detail coefficients vector cD.
idwt is the inverse function of dwt in the sense that the abstract statement idwt(dwt(X,'wname'), 'wname') would give back X .

## Examples

Algorithms

## Inverse DWT Using Orthogonal Wavelet

Demonstrate perfect reconstruction using dwt and idwt with an orthgonal wavelet.

```
load noisdopp;
[A,D] = dwt(noisdopp,'sym4');
x = idwt(A,D,'sym4');
max(abs(noisdopp-x))
```


## Inverse DWT Using Biorthgonal Wavelet

Demonstrate perfect reconstruction using dwt and idwt with a biorthogonal wavelet.

```
load noisdopp;
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('bior3.5');
[A,D] = dwt(noisdopp,Lo_D,Hi_D);
x = idwt(A,D,Lo_R,Hi_R);
max(abs(noisdopp-x))
```

Starting from the approximation and detail coefficients at level $j, c A j$ and $c D_{j}$, the inverse discrete wavelet transform reconstructs $c A_{j-1}$, inverting the decomposition step by inserting zeros and convolving the results with the reconstruction filters.

## One-Dimensional IDWT

## Reconstruction step



Where $\quad 42$ Insert zeros at odd-indexed elements
X Convolve with filter X
wkeep Take the central part of $U$ with the

See Also dwt | dwtmode | upwlev

References

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed.

Mallat, S. (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674-693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

Purpose
Single-level inverse discrete 2-D wavelet transform
Syntax

```
X = idwt2(cA,cH,cV,cD,'wname')
X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R)
X = idwt2(cA,cH,cV,cD,'wname',S)
X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)
idwt2(cA,cH,cV,cD,'wname')
X = idwt2(...,'mode',MODE)
X = idwt2(cA,[],[],[],...)
X = idwt2([],cH,[],[],...)
```


## Description

The idwt2 command performs a single-level two-dimensional wavelet
reconstruction with respect to either a particular wavelet ('wname', see wfilters for more information) or particular wavelet reconstruction filters (Lo_R and Hi_R) that you specify.

X = idwt2(cA, cH, cV, cD, 'wname') uses the wavelet 'wname' to compute the single-level reconstructed approximation coefficients matrix $X$, based on approximation matrix cA and details matrices $\mathrm{cH}, \mathrm{cV}$, and $C D$ (horizontal, vertical, and diagonal, respectively).

X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R) reconstructs as above, using filters that you specify.

- Lo_R is the reconstruction low-pass filter.
- $H_{i}$ R is the reconstruction high-pass filter.

Lo_R and Hi_R must be the same length.
Let sa $=\operatorname{size}(c A)=\operatorname{size}(c H)=\operatorname{size}(c V)=\operatorname{size(cD)}$ and lf the length of the filters; then size $(X)=S X$, where $S X=2^{*} S A$, if the DWT extension mode is set to periodization. For the other extension modes, SX = 2*size(cA)-lf+2.

For more information about the different Discrete Wavelet Transform extension modes, see dwtmode.

X = idwt2(cA,cH,cV,cD,'wname',S) and X =
idwt2 ( $\mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}, \mathrm{Lo}_{-} \mathrm{R}, \mathrm{Hi}$ _R,S) return the size-S central portion of
the result obtained using the syntax idwt2(cA, cH, cV, cD, 'wname'). $S$ must be less than $S X$.

X = idwt2(...,'mode', MODE) computes the wavelet reconstruction using the extension mode MODE that you specify.
X = idwt2(cA, [], [], [],...) returns the single-level reconstructed approximation coefficients matrix $X$ based on approximation coefficients matrix cA.

X = idwt2([],cH,[],[],...) returns the single-level reconstructed detail coefficients matrix $X$ based on horizontal detail coefficients matrix cH .

The same result holds for $\mathrm{X}=$ idwt2([],[],cV,[],...) and $X=$ idwt2([],[],[], CD, ...), based on vertical and diagonal details.
More generally, $\mathrm{X}=$ idwt2 ( $\mathrm{AA}, \mathrm{HH}, \mathrm{VV}, \mathrm{DD}, \ldots$ ) returns the single-level reconstructed matrix $X$, where AA can be cA or [], and so on.
idwt2 is the inverse function of dwt2 in the sense that the abstract statement
idwt2(dwt2(X,'wname'), 'wname') would give back X.

Tips

Examples

If $\mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}$ are obtained from an indexed image analysis or a truecolor image analysis, they are m-by-n matrices or m-by-n-by-3 arrays, respectively.

For more information on image formats, see the image and imfinfo reference pages.

```
% The current extension mode is zero-padding (see dwtmode).
% Load original image.
load woman;
% X contains the loaded image.
sX = size(X);
% Perform single-level decomposition
```

```
% of X using db4.
[cA1,cH1,cV1,cD1] = dwt2(X,'db4');
% Invert directly decomposition of X
% using coefficients at level 1.
AO = idwt2(cA1,cH1,cV1,cD1,'db4',sX);
% Check for perfect reconstruction.
max(max(abs(X-AO)))
ans =
 3.4176e-10
```


## Algorithms

## Two-Dimensional IDWT

Reconstruction step


Where
241 Upsample columns: insert zeros at odd-indexed columns.
1 \& 2 Upsample rows: insert zeros at odd-indexed rows.
rows
X Convolve with filter X the rows of the entry.
columns
X Convolve with filter X the columns of the entry.

See Also
dwt2 | dwtmode | upwlev2

## Purpose Single-level inverse discrete 3-D wavelet transform

Syntax $\quad X=$ idwt3(WT)
C = idwt3(WT,TYPE)

## Description

The idwt3 command performs a single-level three-dimensional wavelet reconstruction starting from a single-level three-dimensional wavelet decomposition.

X = idwt3(WT) computes the single-level reconstructed 3-D array X, based on the three-dimensional wavelet decomposition stored in the WT structure. This structure contains the following fields.

| sizeINI | Size of the three-dimensional array $X$. |
| :--- | :--- |
| mode | Name of the wavelet transform extension mode. |
| filters | Structure with 4 fields, LoD, HiD, LoR, HiR, which <br> contain the filters used for DWT. |
| dec | $2 \times 2 \times 2$ cell array containing the coefficients of the <br> decomposition. |
| dec $\{i, j, k\}, i, j, k=1$ or 2 contains the coefficients |  |
| obtained by low-pass filtering (for $i$ or $j$ or $k=1$ ) |  |
| or high-pass filtering (for $i$ or $j$ or $k=2)$. |  |

C = idwt3(WT,TYPE) computes the single-level reconstructed component based on the three-dimensional wavelet decomposition. Valid values for TYPE are:

- A group of three characters 'xyz', one per direction, with ' $x$ ', ' $y$ ' and 'z' selected in the set \{'a','d','l','h'\} or in the corresponding uppercase set \{'A','D','L','H'\}), where 'A' (or 'L') specifies low-pass filter and 'D' (or 'H') specifies high-pass filter.
- The char 'd' (or 'h' or 'D' or 'H') which specifies the sum of all the components different from the low-pass component.
Examples \% Define original 3D data.

$X \quad=r e s h a p e(1: 64,4,4,4)$;
\% Decompose X using db1.
wt = dwt3(X,'db1');
\% Reconstruct X from coefficients.
XR = idwt3(wt);
\% Compute reconstructed approximation, i.e. the
\% low-pass component.
A = idwt3(wt, 'aaa');
\% Compute the sum of all the components different
\% from the low-pass component.
D = idwt3(wt,'d');
\% Reconstruct the component associated with low-pass in the
$\% \mathrm{X}$ and Z directions and high-pass in the Y direction.
ADA = idwt3(wt,'ada');

[^3]Purpose Inverse 1-D lifting wavelet transform

```
Syntax
X = ilwt (AD_In_Place,W)
\(X=\) ilwt (CA,CD,W)
X = ilwt (AD_In_Place,W,LEVEL)
X = ILWT(CA,CD, W,LEVEL)
X = ilwt(AD_In_Place,W,LEVEL,'typeDEC',typeDEC)
X = ilwt(CA,CD,W,LEVEL,'typeDEC',typeDEC)
```


## Description

Examples
ilwt performs a 1-D lifting wavelet reconstruction with respect to a particular lifted wavelet that you specify.

X = ilwt (AD_In_Place,W) computes the reconstructed vector $X$ using the approximation and detail coefficients vector AD_In_Place obtained by a lifting wavelet reconstruction. $W$ is a lifted wavelet name (see liftwave).
$X=$ ilwt (CA,CD, W) computes the reconstructed vector $X$ using the approximation coefficients vector CA and detail coefficients vector CD obtained by a lifting wavelet reconstruction.

X = ilwt(AD_In_Place,W,LEVEL) or X = ILWT(CA,CD,W,LEVEL) computes the lifting wavelet reconstruction, at level LEVEL.

X = ilwt (AD_In_Place, W,LEVEL, 'typeDEC', typeDEC) or X = ilwt(CA,CD, W, LEVEL, 'typeDEC', typeDEC) with typeDEC = 'w' or 'wp ' computes the wavelet or the wavelet packet decomposition using lifting, at level LEVEL.
Instead of a lifted wavelet name, you may use the associated lifting scheme LS: $\mathrm{X}=\operatorname{ilwt}(\ldots, L S, \ldots)$ instead of $X=\operatorname{ILWT}(. . ., W, \ldots)$.

For more information about lifting schemes, see lsinfo.

```
% Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');
% Add a primal ELS to the lifting scheme.
```

```
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
% Perform LWT at level 1 of a simple signal.
x = 1:8;
[cA,cD] = lwt(x,lsnew);
% Perform integer LWT of the same signal.
lshaarInt = liftwave('haar','int2int');
lsnewInt = addlift(lshaarInt,els);
[cAint,cDint] = lwt(x,lsnewInt);
% Invert the two transforms.
xRec = ilwt(cA,cD,lsnew);
err = max (max (abs(x-xRec)))
err =
 4.4409e-016
xRecInt = ilwt(cAint,cDint,lsnewInt);
errInt = max(max(abs(x-xRecInt)))
errInt =
 0
lwt
```

See Also

Purpose Inverse 2-D lifting wavelet transform

| Syntax | X = ilwt2(AD_In_Place,W) |
| :---: | :---: |
|  | $\mathrm{X}=$ ilwt2(CA, $\mathrm{CH}, \mathrm{CV}, \mathrm{CD}, \mathrm{W}$ ) |
|  | X = ilwt2(AD_In_Place,w,LEVEL) |
|  | X = ILWT2(CA, CH, CV, CD, W, LEVEL) |
|  | X = ilwt2(AD_In_Place, W, LEVEL, 'typeDEC', typeDEC) |
|  | X = ilwt2(CA, CH, CV, CD, W, LEVEL, 'typeDEC', typeDEC) |

## Description

Tips
ilwt2 performs a 2-D lifting wavelet reconstruction with respect to a particular lifted wavelet that you specify.

X = ilwt2(AD_In_Place,W) computes the reconstructed matrix $X$ using the approximation and detail coefficients matrix AD_In_Place, obtained by a lifting wavelet decomposition. $W$ is a lifted wavelet name (see liftwave).
$\mathrm{X}=$ ilwt2(CA, CH, CV, CD, W) computes the reconstructed matrix X using the approximation coefficients vector CA and detail coefficients vectors $\mathrm{CH}, \mathrm{CV}$, and CD obtained by a lifting wavelet decomposition.

X = ilwt2(AD_In_Place,W,LEVEL) or X = ILWT2 (CA, CH, CV , CD, W, LEVEL) computes the lifting wavelet reconstruction, at level LEVEL.

X = ilwt2(AD_In_Place, W,LEVEL, 'typeDEC', typeDEC) or X = ilwt2(CA, CH, CV, CD, W, LEVEL, 'typeDEC', typeDEC) with typeDEC = ' w' or 'wp' computes the wavelet or the wavelet packet decomposition using lifting, at level LEVEL.

Instead of a lifted wavelet name, you may use the associated lifting scheme LS: X = ilwt2(...,LS,...) instead of $X=$ ilwt2(...,W,...).

For more information about lifting schemes, see lsinfo.
If AD_In_Place or $\mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}$ are obtained from an indexed image analysis or a truecolor image analysis, they are m-by-n matrices or m-by-n-by- 3 arrays, respectively.

For more information on image formats, see the image and imfinfo reference pages.

## Examples

```
% Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');
% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
% Perform LWT at level 1 of a simple image.
x = reshape(1:16,4,4);
[cA,cH,cV,cD] = lwt2(x,lsnew);
% Perform integer LWT of the same image.
lshaarInt = liftwave('haar','int2int');
lsnewInt = addlift(lshaarInt,els);
[cAint,cHint,cVint,cDint] = lwt2(x,lsnewInt);
```

\% Invert the two transforms.
$x R e c=$ ilwt2(cA, cH, cV, cD,lsnew);
err $=\max (\max (\operatorname{abs}(x-x R e c)))$
err $=$
0
xRecInt = ilwt2(cAint, cHint, cVint, cDint,lsnewInt);
errInt $=\max (\max (\operatorname{abs}(x-x R e c I n t)))$
errInt =
0

## See Also

 lwt2
## ind2depo

Purpose Node index to node depth-position

## Syntax $\quad[D, P]=$ ind2depo (ORD,[D P])

Description ind2depo is a tree-management utility.
For a tree of order ORD, [D, P] = ind2depo(ORD, N) computes the depths D and the positions P (at these depths D ) for the nodes with indices N .

The nodes are numbered from left to right and from top to bottom. The root index is 0 .

N must be a column vector of integers ( $\mathrm{N} \quad 0$ ).
Note that [D, P] = ind2depo(ORD,[D P]).

## Examples

```
% Create initial tree.
ord = 2; t = ntree(ord,3); % Binary tree of depth 3.
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)
% Change Node Label from Depth_Position to Index
% (see the plot function).
```


\% List t nodes (index).

```
aln_ind = allnodes(t)
aln_ind =
 O
 1
 2
 3
 4
 5
 6
 7
 8
 13
 14
% Switch from index to Depth_Position.
[depth,pos] = ind2depo(ord,aln_ind);
aln_depo = [depth,pos]
aln_depo =
 0
 0
 1
 0
 2 1
 2
 2 3
 0
 3 1
 3 6
 3 7
```

See Also depo2ind

Purpose Inverse nondecimated 1-D wavelet transform

| Syntax | $C=\operatorname{indwt}(W$, TYPE, $N$ ) |
| :---: | :---: |
|  | $C=$ indwt ( $W$, TYPE) |
|  | C = indwt ( $W$, TYPE, $N$ ) |
|  | $\mathrm{X}=$ indwt $(W)$ |
|  | $X=\operatorname{indwt}\left(W,{ }^{\prime}{ }^{\prime}, 0\right)$ |
|  | $\mathrm{X}=\operatorname{indwt}\left(W,{ }^{\text {ca' }}\right.$, 0 ) |

## Description

## Examples

indwt performs a multilevel nondecimated 1-D wavelet reconstruction starting from a multilevel nondecimated 1-D wavelet decomposition. You can also use indwt to extract coefficients from a multilevel nondecimated 1-D wavelet decomposition.

C = indwt ( $W$, TYPE,$N$ ) computes the reconstructed components at level $N$ of a non-decimated 1-D wavelet decomposition. $N$ must be a positive integer less or equal to the level of the decomposition. The valid value for TYPE is a char:

- 'a' (or 'l' or 'A' or 'L'), which gives the low-pass component
- 'd' (or 'h' or 'D' or 'H'), which gives the high-pass component
where 'A' (or 'L') specifies low-pass filter and 'D' (or 'H') specifies high-pass filter.
For extraction, the valid values for TYPE are the same but prefixed by 'c' or 'C'.
See ndwt for more information about the decomposition structure $W$.
$C=$ indwt ( $W$, TYPE) is equivalent to $C=\operatorname{indwt}(W, T Y P E, N)$ with $N$ equal to the level of the decomposition.
 reconstructs the vector $X$ based on the nondecimated 1-D wavelet decomposition structure $W$.

```
% Load the signal
load noissin;
```

```
x = noissin;
% Decompose X at level 3 using db1.
W1 = ndwt(x,3,'db1');
% Reconstruct the original signal from the
% decomposition W1 structure.
a0 = indwt(W1,'a',0);
% Check for perfect reconstruction.
err = max(abs(x(:)-a0(:)))
err =
 8.8818e-016
% Decompose X at level 3 using db3 and periodic extension mode.
W2 = ndwt(x,3,'db3','mode','per');
% Reconstruct approximation at level }2
a2 = indwt(W2,'a',2);
% Reconstruct detail at level 2.
d2 = indwt(W2,'d',2);
% Reconstruct detail at level 1.
d1 = indwt(W2,'d',1);
dwtmode | ndwt | waveinfo
```

See Also

Purpose Inverse nondecimated 2-D wavelet transform
Syntax $\quad C=\operatorname{indwt2}(W, T Y P E, N)$
C = indwt2( $W$, TYPE)
C = indwt2(W, TYPE,N)
$\mathrm{X}=$ indwt2(W)
X = indwt2( $W$,'a', 0)
$\left.\mathrm{X}=\operatorname{indwt2(} \mathbf{W}, \mathrm{'ca}^{\prime}, 0\right)$

## Description

indwt2 performs a multilevel nondecimated 2-D wavelet reconstruction starting from a multilevel nondecimated 2-D wavelet decomposition. You can also use indwt2 to extract coefficients from a multilevel nondecimated 2 -D wavelet decomposition.
$C=$ indwt2 $(W, T Y P E, N)$ computes the reconstructed or the extracted components at level $N$ of a nondecimated 2-D wavelet decomposition. $N$ must be a positive integer less or equal to the level of the decomposition. The valid values for TYPE are:

- A group of 2 chars ' $x y$ ', one per direction, with ' $x$ ' and ' $y$ ' in the set \{'a','d','l','h'\} or in the corresponding uppercase set \{'A','D','L','H'\}), where 'A' (or 'L') stands for low-pass filter and 'D' (or 'H') stands for high-pass.
- The char 'd' (or 'h' or 'D' or 'H') specifies the sum of the components different from the low-pass one.
For extraction, the valid values for TYPE are the same as above prefixed by 'c' or 'C'.

See ndwt2 for more information about the decomposition structure $W$.
$C=$ indwt2 $(W$, TYPE $)$ is equivalent to $C=$ indwt2 $(W$, TYPE, $N)$ with $N$ equal to the level of the decomposition.
$\mathrm{X}=\operatorname{indwt2}(W), \mathrm{X}=\operatorname{indwt2}\left(W, \mathrm{a}^{\prime}, 0\right)$ or $\left.\mathrm{X}=\operatorname{indwt2(} \mathbf{W}, \mathrm{Ca}^{\prime}, 0\right)$ reconstructs the matrix $X$ based on the nondecimated 2-D wavelet decomposition structure $W$.

Examples \% Load original image. load noiswom
\% Decompose X at level 3 using db1. W = ndwt2(X,3,'db1');
\% Reconstruct approximations at levels 1 to 3.
A = cell(1,3);
for $k=1: 3, A\{k\}=$ indwt2(W,'aa',k); end
\% Plot original image at the top and approximations \% at the bottom.
figure; colormap(pink(255))
subplot (2,3,2);image(X);
for $k=1: 3$
subplot(2,3,k+3);image(A\{k\});
end


\% Compute reconstructed approximation and detail at level 1.
A1 = indwt2(W,'aa',1);
D1 = indwt2(W,'d',1);
\% Check that $\mathrm{X}=\mathrm{A} 1+\mathrm{D} 1$.
E1 = X-A1-D1;
$\operatorname{err1}=\max (\operatorname{abs}(E 1(:)))$
err1 $=$

$$
2.6645 e-013
$$

\% Compute reconstructed approximation and detail at level 2. A2 = indwt2(W, 'aa',2);

```
D2 = indwt2(W,'d',2);
% Check that X = A2 + D2.
E2 = X-A2-D2;
err2 = max(abs(E2(:)))
err2 =
 2.5668e-013
```

See Also dwtmode | ndwt2 | waveinfo
Purpose Integrate wavelet function psi ( $\Psi$ )
Syntax

[INTEG,XVAL] = intwave('wname',PREC)

[INTDEC,XVAL,INTREC] = intwave('wname',PREC)

[INTEG,XVAL] = intwave('wname',PREC)

[INTEG,XVAL] = intwave('wname',PREC,0)

[INTEG,XVAL] = intwave('wname')

[INTEG,XVAL] = intwave('wname',8)

intwave('wname',IN2,IN3), PREC $=\max ($ IN2,IN3)

intwave('wname',0)

intwave('wname', 8, IN3)

intwave('wname')

intwave('wname', 8)

## Description

[INTEG,XVAL] = intwave('wname', PREC) computes the integral, INTEG, of the wavelet function $\Psi$ (from $-\infty$ to XVAL values): $\int_{-\infty}^{x} \psi(y) d y$ for $x$ in XVAL.
The function $\Psi$ is approximated on the $2^{\text {PREC }}$ points grid XVAL where PREC is a positive integer. 'wname' is a string containing the name of the wavelet $\Psi$ (see wfilters for more information).
Output argument INTEG is a real or complex vector depending on the wavelet type.
For biorthogonal wavelets,
[INTDEC, XVAL, INTREC] = intwave('wname', PREC) computes the integrals, INTDEC and INTREC, of the wavelet decomposition function $\Psi_{\text {dec }}$ and the wavelet reconstruction function $\Psi_{\text {rec }}$.
[INTEG,XVAL] = intwave('wname', PREC) is equivalent to
[INTEG,XVAL] = intwave('wname',PREC,0).
[INTEG, XVAL] = intwave('wname') is equivalent to [INTEG, XVAL]
= intwave('wname', 8).
When used with three arguments intwave('wname', IN2, IN3), PREC
$=\max ($ IN2, IN3 $)$ and plots are given.

## intwave

When IN2 is equal to the special value 0 , intwave('wname ', 0 ) is equivalent to intwave('wname', 8, IN3).
intwave('wname') is equivalent to intwave('wname', 8).
intwave is used only for continuous analysis (see cwt for more information).

Examples

```
% Set wavelet name.
wname = 'db4';
% Plot wavelet function.
[phi,psi,xval] = wavefun(wname,7);
subplot(211); plot(xval,psi); title('Wavelet');
% Compute and plot wavelet integrals approximations
% on a dyadic grid.
[integ,xval] = intwave(wname,7);
subplot(212); plot(xval,integ);
title(['Wavelet integrals over [-Inf x] ' ...
 'for each value of xval']);
```



Algorithms

See Also

First, the wavelet function is approximated on a grid of $2^{\mathrm{PREC}}$ points using wavefun. A piecewise constant interpolation is used to compute the integrals using cumsum.

Purpose Existing node test
Syntax $\quad R=\operatorname{isnode}(T, N)$
Description
isnode is a tree-management utility.
$\mathrm{R}=$ isnode $(T, N)$ returns 1 's for nodes $N$, which exist in the tree $T$, and 0's for others.
$N$ can be a column vector containing the indices of nodes or a matrix, that contains the depths and positions of nodes.
In the last case, $N(i, 1)$ is the depth of the $i$-th node and $N(i, 2)$ is the position of the i-th node.

The nodes are numbered from left to right and from top to bottom. The root index is 0 .

## Examples

\% Create initial tree.
ord = 2;
$\mathrm{t}=\mathrm{ntree}($ ord,3); $\%$ binary tree of depth 3.
t = nodejoin(t,5);
$\mathrm{t}=$ nodejoin(t,4);
plot(t)

\% Change Node Label from Depth_Position to Index
\% (see the plot function).

\% Check node index.
isnode(t,[1;3;25])
ans =
1
1
0
\% Check node Depth_Position.
isnode(t,[1 0;3 1;4 5])
ans =
1
1
0
See Also
istnode | wtreemgr

## istnode

Purpose Terminal nodes indices test

## Syntax $\quad R=\operatorname{istnode}(T, N)$

Description istnode is a tree-management utility.
$R=$ istnode ( $T, N$ ) returns ranks (in left to right terminal nodes ordering) for terminal nodes $N$ belonging to the tree $T$, and 0 's for others.
$N$ can be a column vector containing the indices of nodes or a matrix that contains the depths and positions of nodes.

In the last case, $N(i, 1)$ is the depth of the $i$-th node and $N(i, 2)$ is the position of the i-th node.

The nodes are numbered from left to right and from top to bottom. The root index is 0 .

```
Examples %Create initial tree.
ord = 2;
t = ntree(ord,3); % binary tree of depth 3.
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)
```



[^4]\% (see the plot function)x.


```
\% Find terminal nodes and return indices for terminal
% nodes in the tree.
istnode(t,[14])
ans =
 6
istnode(t,[15])
ans =
 0
istnode(t,[1;7;14;25])
ans =
 O
 1
 6
 0
istnode(t,[1 0;3 1;4 5])
ans =
 0
 2
 0
```


## istnode

## See Also isnode | wtreemgr

Purpose<br>Syntax<br>\section*{Description}

Inverse discrete stationary wavelet transform 1-D

X = iswt(SWC,'wname')
X = iswt(SWA,SWD,' wname')
X = iswt(SWA(end,:),SWD,'wname')
X = iswt(SWC,Lo_R,Hi_R)
X = iswt(SWA,SWD,Lo_R,Hi_R)
X = iswt(SWA(end,:),SWD,Lo_R,Hi_R)

## Examples

iswt performs a multilevel 1-D stationary wavelet reconstruction using either a specific orthogonal wavelet ('wname', see wfilters for more information) or specific reconstruction filters (Lo_R and Hi_R).

X = iswt(SWC,'wname') or X = iswt(SWA, SWD,'wname') or X = iswt (SWA(end, :), SWD, 'wname') reconstructs the signal $X$ based on the multilevel stationary wavelet decomposition structure SWC or [SWA, SWD] (see swt for more information).

X = iswt(SWC,Lo_R,Hi_R) or X = iswt(SWA,SWD,Lo_R,Hi_R) or X = iswt (SWA (end, :), SWD, Lo_R,Hi_R) reconstruct as above, using filters that you specify.

- Lo_R is the reconstruction low-pass filter.
- Hi_R is the reconstruction high-pass filter.

Lo_R and Hi_R must be the same length.
\% Load original 1D signal.
load noisbloc; s = noisbloc;
\% Perform SWT decomposition at level 3 of $s$ using db1.
swc = swt(s,3,'db1');
\% Second usage.
[swa,swd] = swt(s,3,'db1');
\% Reconstruct s from the stationary wavelet
\% decomposition structure swc.
a0 = iswt(swc,'db1');

```
% Second usage.
aObis = iswt(swa,swd,'db1');
% Check for perfect reconstruction.
err = norm(s-aO)
err =
 9.6566e-014
errbis = norm(s-a0bis)
errbis =
 9.6566e-014
```

References Nason, G.P.; B.W. Silverman (1995), "The stationary wavelet transform and some statistical applications," Lecture Notes in Statistics, 103, pp. 281-299.

Coifman, R.R.; Donoho D.L. (1995), "Translation invariant de-noising," Lecture Notes in Statistics, 103, pp 125-150.

Pesquet, J.C.; H. Krim, H. Carfatan (1996), "Time-invariant orthonormal wavelet representations," IEEE Trans. Sign. Proc., vol. 44, 8, pp. 1964-1970.

See Also idwt \| swt \| waverec

| Purpose | Inverse discrete stationary wavelet transform 2-D |
| :---: | :---: |
| Syntax | $\begin{aligned} & X=\text { iswt2(SWC, 'wname') } \\ & X=\text { iswt2(A,H,V,D,wname) } \\ & X=\text { iswt2(A(:, :, end), H,V,D, 'wname') } \\ & X=\text { iswt2(SWC,Lo_R,Hi_R) } \\ & X=\text { iswt2(A,H,V,D,Lo_R,Hi_R) } \\ & X=\text { iswt2(A(:, :, end), H,V,D,Lo_R,Hi_R) } \end{aligned}$ |
| Description | iswt2 performs a multilevel 2-D stationary wavelet reconstruction using either a specific orthogonal wavelet ('wname' see wfilters for more information) or specific reconstruction filters (Lo_R and Hi_R). <br> X = iswt2(SWC, 'wname') or $\mathrm{X}=$ iswt2(A, $\mathrm{H}, \mathrm{V}, \mathrm{D}$, wname) or $\mathrm{X}=$ iswt2(A(:, :, end) , H, V, D, 'wname') reconstructs the signal $X$, based on the multilevel stationary wavelet decomposition structure SWC or [A, H, V, D] (see swt2). <br> X = iswt2(SWC,Lo_R,Hi_R) or X = iswt2(A,H,V,D,Lo_R,Hi_R) or $X=$ iswt2(A(:,:,end), $\left.H, V, D, L o \_R, H i \_R\right)$ reconstructs as in the previous syntax, using filters that you specify: <br> - Lo_R is the reconstruction low-pass filter. <br> - $\mathrm{Hi}_{-} \mathrm{R}$ is the reconstruction high-pass filter. <br> Lo_R and Hi_R must be the same length. |
| Tips | If SWC or (cA,cH,cV,cD) are obtained from an indexed image analysis a truecolor image analysis, then X is an $m$-by- $n$ matrix or an $m$-by- $n$-byarray, respectively. <br> For more information on image formats, see the image and imfinfo reference pages. |
| Examples | ```% Load original image. load nbarb1; % Perform SWT decomposition``` |

```
% of X at level 3 using sym4.
swc = swt2(X,3,'sym4');
% Second usage.
[ca,chd,cvd,cdd] = swt2(X,3,'sym4');
% Reconstruct s from the stationary wavelet
% decomposition structure swc.
a0 = iswt2(swc,'sym4');
% Second usage.
a0 = iswt2(ca,chd,cvd,cdd,'sym4');
% Check for perfect reconstruction.
err = max(max(abs(X-a0)))
ans =
 2.3482e-010
errbis = max(max(abs(X-a0bis)))
ans =
 2.3482e-010
```

References Nason, G.P.; B.W. Silverman (1995), "The stationary wavelet transform
and some statistical applications," Lecture Notes in Statistics, 103, pp.
281-299.

Coifman, R.R.; Donoho D.L. (1995), "Translation invariant de-noising," Lecture Notes in Statistics, 103, pp. 125-150.

Pesquet, J.C.; H. Krim, H. Carfatan (1996), "Time-invariant orthonormal wavelet representations," IEEE Trans. Sign. Proc., vol. 44, 8, pp. 1964-1970.

## See Also

idwt2 | swt2 | waverec2

## Purpose Laurent matrices constructor

## Syntax <br> M = laurmat(V)

Description $\quad M=$ laurmat $(V)$ returns the Laurent matrix object $M$ associated with $V$ which can be a cell array (at most two dimensional) of Laurent polynomials (see laurpoly) or an ordinary matrix.

Examples \% Define Laurent matrices. M1 = laurmat (eye (2,2) )


Z = laurpoly(1,1);
M2 = laurmat(\{1 Z;0 1\})

\% Calculus on Laurent polynomials.
P = M1 * M2

$d=\operatorname{det}(P)$

## laurmat

$$
d(z)=1
$$

## References Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley-Cambridge Press. <br> Sweldens, W. (1998), "The Lifting Scheme: a Construction of Second Generation of Wavelets," SIAM J. Math. Anal., 29 (2), pp. 511-546.

## See Also laurpoly

## Purpose

Laurent polynomials constructor

## Syntax

```
P = laurpoly(C,d)
P = laurpoly(C,'dmin',d)
P = laurpoly(C,'dmax',d)
P = laurpoly(C,d)
```

P = laurpoly (C,d) returns a Laurent polynomial object. $C$ is a vector whose elements are the coefficients of the polynomial $P$ and $d$ is the highest degree of the monomials of $P$.

If $m$ is the length of the vector $C, P$ represents the following Laurent polynomial:

```
P(z) = C(1)*z^d + C(2)*z^(d-1) + ... + C(m)*z^(d-m+1)
```

$P=$ laurpoly (C, 'dmin', d) specifies the lowest degree instead of the highest degree of monomials of $P$. The corresponding output $P$ represents the following Laurent polynomial:

```
P(z) = C(1)* *^(d+m-1) + ... +C(m-1)*z^(d+1) +C(m)*z^d
P = laurpoly(C,'dmax',d) is equivalent to P = laurpoly(C,d).
```

Examples \% Define Laurent polynomials. P = laurpoly([1:3],2); P = laurpoly([1:3],'dmax',2)
$P(z)=+z^{\wedge}(+2)+2^{*} z^{\wedge}(+1)+3$
P = laurpoly([1:3],'dmin',2)
$P(z)=+z^{\wedge}(+4)+2 * z^{\wedge}(+3)+3^{*} z^{\wedge}(+2)$
\% Calculus on Laurent polynomials.
Z = laurpoly (1,1)

## laurpoly

$$
\begin{aligned}
& Z(z)=z^{\wedge}(+1) \\
& Q=Z^{*} P \\
& Q(z)=+z^{\wedge}(+5)+2^{\star} z^{\wedge}(+4)+3^{\star} z^{\wedge}(+3) \\
& R=Z^{\wedge} 1-Z^{\wedge}-1 \\
& R(z)=+z^{\wedge}(+1)-Z^{\wedge}(-1)
\end{aligned}
$$

## References Strang, G.; T. Nguyen (1996), Wavelets and filter banks,

 Wellesley-Cambridge Press.Sweldens, W. (1998), "The Lifting Scheme: a Construction of Second Generation of Wavelets," SIAM J. Math. Anal., 29 (2), pp. 511-546.

See Also laurmat

## Purpose Determine terminal nodes

Syntax

```
N = leaves(T)
[N,K] = leaves(T,'sort')
N = leaves(T,'dp')
[N,K] = leaves(T,'sortdp')
[N,K] = leaves(T,'sdp')
```

Description

Examples
$N=$ leaves $(T)$ returns the indices of terminal nodes of the tree $T$ where $N$ is a column vector.

The nodes are ordered from left to right as in tree $T$.
$[\mathrm{N}, \mathrm{K}]=$ leaves(T,'s') or [N,K] = leaves(T,'sort') returns sorted indices. $M=N(K)$ are the indices reordered as in tree $T$, from left to right.
$N=$ leaves(T,'dp') returns a matrix $N$, which contains the depths and positions of terminal nodes.
$N(i, 1)$ is the depth of the $i$-th terminal node, and $N(i, 2)$ is the position of the i-th terminal node.
[ $\mathrm{N}, \mathrm{K}$ ] = leaves(T,'sortdp') or [ $\mathrm{N}, \mathrm{K}$ ] = leaves( $\mathrm{T}, \mathrm{sdp}$ ') returns sorted nodes.

```
% Create initial tree.
ord = 2;
t = ntree(ord,3); % binary tree of depth 3.
t=nodejoin(t,5);
t=nodejoin(t,4);
plot(t)
```


## leaves


\% List terminal nodes (index).
tnodes_ind = leaves(t)
tnodes_ind =
7
8
4
5
13
14
\% List terminal nodes (sorted on index).
[tnodes_ind,Ind] = leaves(t,'sort')
tnodes_ind =
4
5
7

8
13
14

Ind =
3
4
1
2
5

```
% List terminal nodes (Depth_Position).
tnodes_depo = leaves(t,'dp')
tnodes_depo =
 0
 3 1
 2 1
 2 2
 3 6
 3 7
% List terminal nodes (sorted on Depth_Position).
[tnodes_depo,Ind] = leaves(t,'sortdp')
tnodes_depo =
 2 1
 2 2
 0
 3 1
 3 6
 3 7
Ind =
 3
 4
 1
 2
 5
 6
```

See Also
tnodes | noleaves

## liftfilt

## Purpose

Apply elementary lifting steps on quadruplet of filters

```
Syntax
 [LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,HiD,LoR,HiR,ELS)
 liftfilt(LoD,HiD,LoR,HiR,ELS,TYPE,VALUE)
```

[LoDN, HiDN, LoRN, HiRN] = liftfilt(LoD, HiD, LoR, HiR, ELS) returns the four filters LoDN, HiDN, LoRN, and HiRN obtained by an elementary lifting step (ELS) starting from the four filters LoD, HiD, LoR, and HiR. The four input filters verify the perfect reconstruction condition.
ELS is a structure such that

- TYPE = ELS. type contains the type of the elementary lifting step. The valid values for TYPE are ' $p$ ' (primal) or ' $d$ ' (dual).
- VALUE = ELS.value contains the Laurent polynomial T associated with the elementary lifting step (see laurpoly). If VALUE is a vector, the associated Laurent polynomial $T$ is equal to laurpoly (VALUE , 0).
In addition, ELS may be a scaling step. In that case, TYPE is equal to ' $s$ ' (scaling) and VALUE is a scalar different from zero.
liftfilt(LoD, HiD, LoR, HiR, ELS, TYPE , VALUE) gives the same outputs.

Note If TYPE = 'p', HiD and LoR are unchanged.
If TYPE $=$ ' $d$ ', LoD and HiR are unchanged.
If TYPE $=$ 's', the four filters are changed.
If ELS is an array of elementary lifting steps, liftfilt (..., ELS) performs each step successively.
liftfilt(..., FLAGPLOT) plots the successive biorthogonal pairs-scaling function and wavelet.

## Examples

```
% Get Haar filters.
[LoD,HiD,LoR,HiR] = wfilters('haar');
% Lift the Haar filters.
```

```
twoels(1) = struct('type','p','value',...
laurpoly([0.125-0.125],0));
twoels(2) = struct('type','p','value',...
laurpoly([0.125 -0.125],1));
[LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,HiD,LoR,HiR,twoels);
% The biorthogonal wavelet bior1.3 is obtained up to
% an unsignificant sign.
[LoDB,HiDB,LoRB,HiRB] = wfilters('bior1.3');
samewavelet = ...
isequal([LoDB, HiDB, LoRB, HiRB],[LoDN, -HiDN, LoRN, HiRN])
samewavelet =
 1
```

See Also laurpoly

## liftwave

Purpose Lifting schemes
Syntax LS = liftwave (WNAME)
LS = liftwave(WNAME,'Int2Int')
Description
LS = liftwave (WNAME) returns the lifting scheme associated with the wavelet specified by WNAME. LS is a structure, not an integer, and used by lwt, ilwt, lwt2, etc.

LS = liftwave(WNAME,'Int2Int') performs an integer to integer wavelet transform. Using 'Int2Int' produces an LS such that when you use [CA, CD] $=\operatorname{lwt}(X, L S)$ or $Y=1 w t(X, L S)$ and $X$ is a vector of integers, the resulting $C A, C D$, and $Y$ are vectors of integers. If you omit 'Int2Int ' then lwt produces vectors of real numbers.

The valid values for WNAME are

| WNAME Values | Comments |
| :--- | :--- |
| 'lazy' | A "lazy" wavelet is a <br> second-generation wavelet <br> and is not a true mathematical <br> wavelet. |
| 'haar' | Same as 'db1', 'bior1.1', and <br> 'cdf1.1' |
| 'db1', 'db2', 'db3', 'db4', <br> 'db5', 'db6', 'db7', 'db8' | 'db2' same as 'sym2', 'db3', <br> and 'sym4' |
| 'sym2', 'sym3', 'sym4', 'sym5', <br> 'sym6', 'sym7', 'sym8' |  |


| WNAME Values | Comments |
| :---: | :---: |
| Cohen-Daubechies-Feauveau wavelets <br> cdf1.1','cdf1.3','cdf1.5' <br> cdf3.1','cdf3.3','cdf3.5' <br> 'cdf5.1','cdf5.3','cdf5.5' <br> cdf2.2','cdf2.4','cdf2.6' <br> 'cdf4.2','cdf4.4','cdf4.6' <br> cdf6.2','cdf6.4','cdf6.6' | 'cdfX.Y' same as 'biorX.Y' except for bior4.4 and bior5.5. |
| biorX.Y' | See waveinfo |
| 'rbioX.Y' | Reverse of 'biorX.Y'. See waveinfo |
| bs3' | Same as 'cdf4.2' |
| 'rbs3' | Reverse of 'bs3' |
| '9.7' | Same as 'bior4.4' |
| 'r9.7' | Reverse of '9.7' |

For more information about lifting schemes, see lsinfo.

## Examples

```
% Start from the db2 wavelet and get the
% corresponding lifting scheme.
lsdb2 = liftwave('db2');
% Visualize the obtained lifting scheme.
displs(lsdb2);
lsdb2 = {...
\begin{tabular}{|c|c|c|c|}
\hline 'd & [-1.73205081] & & 0] \\
\hline 'p' & [-0.06698730 & 0.43301270] & 1] \\
\hline 'd' & [1.00000000] & & -1] \\
\hline 1.93185165] & [0.51763809] & & \\
\hline
\end{tabular}
```


## liftwave

## \};

## See Also <br> laurpoly

## Purpose Identify and chain local maxima

Syntax<br>Description

## Input Arguments

[lmaxima,indices] = localmax(inputmatrix) the local maxima in the rows of inputmatrix. than initrow consist of only zeros. (scaling) coefficients obtained with the sym4 wavelet.

## inputmatrix

[lmaxima,indices] = localmax(inputmatrix,initrow)
[lmaxima,indices] = localmax(inputmatrix,initrow,regflag)
[lmaxima,indices] = localmax(inputmatrix) identifies and chains
[lmaxima,indices] = localmax(inputmatrix,initrow) initializes the chaining of local maxima begining with row initrow. If there are no local maxima in initrow, all rows in lmaxima with indices less
[lmaxima,indices] = localmax(inputmatrix,initrow,regflag) replaces initrow of inputmatrix with the level-5 approximation
inputmatrix is a matrix of real or complex numbers. Most often, inputmatrix is a matrix of continuous wavelet transform (CWT) coefficients, and you use localmax to identify maxima lines. localmax operates on the absolute values of inputmatrix.

## initrow

Initialization row for chaining local maxima. The chaining algorithm begins at initrow and decrements the row index by 1 until the first row of the matrix is reached. By specifying initrow, you can exclude rows from the chaining algorithm.

Default: size(inputmatrix,1)

## regflag

Regularization flag. If you set regflag to true, the row of inputmatrix corresponding to initrow is replaced by the level- 5 approximation (scaling) coefficients obtained with the sym4 wavelet.

Default: true

## Output

Arguments

## Imaxima

Matrix with local maxima chains. lmaxima only has nonzero entries at the locations of local maxima in the absolute values of inputmatrix. Denote the row index of lmaxima by R. You can determine the value of lmaxima at a local maximum in row $R$ as follows:

- If $\mathrm{R}>$ initRow, the value of 1 maxima at a local maximum is 1 .
- If $R=$ initRow, the value of Imaxima at a local maximum is the column index in row R.
- If $R$ <initRow, the value of lmaxima at a local maximum in row $R$ is the column index of the nearest local maximum in row $\mathrm{R}+1$.

To illustrate this, if inputmatrix is:

| 3 | 2 | 5 | 3 |
| :--- | :--- | :--- | :--- |
| 4 | 6 | 3 | 2 |
| 4 | 4 | 7 | 4 |
| 4 | 6 | 2 | 2 |

lmaxima with initRow = 4 and regflag = false is:

| 0 | 0 | 2 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 3 | 0 | 0 |
| 0 | 0 | 2 | 0 |
| 0 | 2 | 0 | 0 |

lmaxima with initRow = 3 and regflag = false is:

| 0 | 0 | 2 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 3 | 0 | 0 |
| 0 | 0 | 3 | 0 |
| 0 | 1 | 0 | 0 |

- If the local maximum in row $R$ lies between two local maxima in row $R+1$, the value of the local maximum in row $R$ is the higher column index in row $\mathrm{R}+1$.

To illustrate this, if inputmatrix is:

| 0 | 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 1 | 0 | 0 |

lmaxima with initRow $=2$ and regflag = false is:

| 0 | 0 | 4 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 0 | 4 | 0 | 0 |

lmaxima with initRow = 1 and regflag = false is:

| 0 | 0 | 3 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 1 | 0 | 0 |

## indices

Linear indices of the nonzero values of Imaxima. Use ind2sub to convert the linear indices to matrix row and column indices.

## Examples

Construct a 4-by-4 matrix with local maxima at the following row-column indices: $(4,2),(3,3),(2,2)$, and $(1,3)$. Set initrow to 4 and regflag to false.

```
inputmatrix = ...
[3 2 5 3
4 6 3
4 4
4 6 2 2];
[lmaxima,indices] = localmax(inputmatrix,4,false);
lmaxima
```

Because localmax operates on the absolute values of inputmatrix, setting inputmatrix $(4,2)=$-inputmatrix $(4,2)$ produces an identical lmaxima.

```
inputmatrix(4,2) = -inputmatrix(4,2);
[lmaxima1,indices1] = localmax(inputmatrix,4,false);
isequal(lmaxima,lmaxima1)
```

Determine the local maxima from the CWT of the cuspamax signal with the Haar wavelet. Plot the CWT coefficient moduli and the maxima lines.

```
load cuspamax;
x = 1:length(cuspamax);
scales = 1:32;
cfs = cwt(cuspamax,scales,'haar');
[lmaxima,indices] = localmax(cfs,[],false);
[iRow,iCol] = find(lmaxima);
subplot(211);
imagesc(abs(cfs)); axis xy;
axis([1 1024 1 32]);
ylabel('Scale'); title('CWT Coefficients (Moduli)');
subplot(212);
plot(x(iCol),scales(iRow),'marker','o','markerfacecolor',[0 0 1],...
 'linestyle','none');
xlabel('Position'); ylabel('Scale'); title('Maxima Lines');
axis([1 1024 1 32]);
```




Purpose Transform lifting scheme to quadruplet of filters

```
Syntax [LoD,HiD,LoR,HiR] = ls2filt(LS)
```

Description [LoD,HiD,LoR,HiR] = ls2filt(LS) returns the four filters LoD, HiD, LoR, and HiR associated with the lifting scheme LS.


```
% Visualize the obtained lifting scheme.
```

displs(LS);
LS = \{...
'd' [ -1.73205081] [0]
'p' [ -0.06698730 0.43301270] [1]
'd' [ 1.00000000] [-1]
[ 1.93185165] [ 0.51763809] []
\};
\% Get the filters from the lifting scheme.
[LoD,HiD,LoR,HiR] = ls2filt(LS)
LoD =
$\begin{array}{llll}-0.1294 & 0.2241 & 0.8365 & 0.4830\end{array}$
HiD =
$\begin{array}{llll}-0.4830 & 0.8365 & -0.2241 & -0.1294\end{array}$
LoR =
$0.4830 \quad 0.8365 \quad 0.2241 \quad-0.1294$
HiR =
$\begin{array}{llll}-0.1294 & -0.2241 & 0.8365 & -0.4830\end{array}$
\% Get the db2 filters using wfilters.
\% You can check the equality.
[LoDref,HiDref,LoRref,HiRref] = wfilters('db2')
LoDref =
$\begin{array}{llll}-0.1294 & 0.2241 & 0.8365 & 0.4830\end{array}$
HiDref =
$\begin{array}{llll}-0.4830 & 0.8365 & -0.2241 & -0.1294\end{array}$
LoRref =
$0.4830 \quad 0.8365 \quad 0.2241 \quad-0.1294$
HiRref =
$\begin{array}{llll}-0.1294 & -0.2241 & 0.8365 & -0.4830\end{array}$
See Also
filt2ls | lsinfo

## Purpose Lifting schemes information

## Syntax lsinfo

Description lsinfo displays the following information about lifting schemes. A lifting scheme LS is a $\mathrm{N} \times 3$ cell array. The $\mathrm{N}-1$ first rows of the array are elementary lifting steps (ELS). The last row gives the normalization of LS.

Each ELS has this format:
\{type, coefficients, max_degree\}
where type is ' $p$ ' (primal) or ' $d$ ' (dual), coefficients is a vector $C$ of real numbers defining the coefficients of a Laurent polynomial $P$ described below, and max_degree is the highest degree $d$ of the monomials of $P$.

The Laurent polynomial $P$ is of the form
$P(z)=C(1)^{*} z^{\wedge} d+C(2)^{*} z^{\wedge}(d-1)+\ldots+C(m)^{*} z^{\wedge}(d-m+1)$
The lifting scheme LS is such that for
$\mathrm{k}=1: \mathrm{N}-1, \operatorname{LS}\{\mathrm{k},: \mathrm{\}}$ is an ELS, where
LS $\{k, 1\}$ is the lifting type ' $p$ ' (primal) or ' $d$ ' (dual).
$L S\{k, 2\}$ is the corresponding lifting filter.
LS $\{\mathrm{k}, 3\}$ is the highest degree of the Laurent polynomial corresponding to the filter LS $\{\mathrm{k}, 2\}$.
$\operatorname{LS}\{N, 1\}$ is the primal normalization (real number).
$\operatorname{LS}\{N, 2\}$ is the dual normalization (real number).
LS $\{\mathrm{N}, 3\}$ is not used.
Usually, the normalizations are such that LS $\{\mathrm{N}, 1\} * \operatorname{LS}\{\mathrm{~N}, 2\}=1$.
For example, the lifting scheme associated with the wavelet db1 is

```
LS = {...
 'd'
 [1.4142] [0.7071] []
 }
```

See Also displs | laurpoly

Purpose
1-D lifting wavelet transform
Syntax

```
[CA,CD] = lwt (X,W)
X_InPlace = lwt(X,W)
lwt(X,W,LEVEL)
X_InPlace = lwt (X,W,LEVEL,'typeDEC',typeDEC)
[CA,CD] = lwt(X,W,LEVEL,'typeDEC',typeDEC)
```


## Description

## Examples

lwt performs a 1-D lifting wavelet decomposition with respect to a particular lifted wavelet that you specify.
$[C A, C D]=\operatorname{lwt}(X, W)$ computes the approximation coefficients vector CA and detail coefficients vector CD, obtained by a lifting wavelet decomposition, of the vector $X . W$ is a lifted wavelet name (see liftwave).
X_InPlace $=$ lwt $(X, W)$ computes the approximation and detail coefficients. These coefficients are stored in place:
CA = X_InPlace (1:2:end) and CD = X_InPlace (2:2:end)
lwt ( $X, W$, LEVEL) computes the lifting wavelet decomposition at level LEVEL.

```
X_InPlace = lwt(X,W,LEVEL,'typeDEC',typeDEC) or [CA,CD] =
lwt(}X,W,LEVEL,'typeDEC',typeDEC) with typeDEC = 'w' or 'wp
computes the wavelet or the wavelet packet decomposition using lifting, at level LEVEL.
```

Instead of a lifted wavelet name, you may use the associated lifting scheme LS: lwt (X,LS, ...) instead of lwt (X,W, ...).

For more information about lifting schemes, see lsinfo.

```
% Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');
% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
```

```
% Perform LWT at level 1 of a simple signal.
x = 1:8;
[cA,cD] = lwt(x,lsnew)
cA =
 1.9445 4.9497 7.7782 10.6066
CD =
 0.7071 0.7071 0.7071 0.7071
% Perform integer LWT of the same signal.
lshaarInt = liftwave('haar','int2int');
lsnewInt = addlift(lshaarInt,els);
[cAint,cDint] = lwt(x,lsnewInt)
cAint =
 1
cDint =
 1 1 1 1 1
```


## Algorithms This function uses the polyphase algorithm.

lwt reduces to dwt with zero-padding extension mode and without extra-coefficients.

## References Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley-Cambridge Press.

Sweldens, W. (1998), "The Lifting Scheme: a Construction of Second Generation of Wavelets," SIAM J. Math. Anal., 29 (2), pp. 511-546.

## Purpose

2-D lifting wavelet transform

## Syntax

[CA,CH,CV,CD] = lwt2(X,W)
X_InPlace = lwt2(X,LS)
lwt2 ( $X, W$, LEVEL)
X_InPlace = lwt2(X,W,LEVEL,'typeDEC',typeDEC)
[CA,CH,CV,CD] = LWT2(X,W,LEVEL,'typeDEC',typeDEC)

## Description

lwt2 performs a 2-D lifting wavelet decomposition with respect to a
particular lifted wavelet that you specify.
[CA,CH,CV,CD] = lwt2 $(X, W)$ computes the approximation coefficients matrix CA and detail coefficients matrices CH, CV, and CD, obtained by a lifting wavelet decomposition, of the matrix $X . W$ is a lifted wavelet name (see liftwave).
X_InPlace $=$ lwt2 $(X, L S)$ computes the approximation and detail coefficients. These coefficients are stored in place:

- CA = X_InPlace(1:2:end,1:2:end)
- CH = X_InPlace(2:2:end,1:2:end)
- CV = X_InPlace(1:2:end,2:2:end)
- CD = X_InPlace(2:2:end,2:2:end)
lwt2 ( $X, W$, LEVEL) computes the lifting wavelet decomposition at level LEVEL.

X_InPlace = lwt2( $X, W$, LEVEL, 'typeDEC',typeDEC) or [CA,CH,CV,CD] = LWT2( $X, W$, LEVEL, 'typeDEC',typeDEC) with typeDEC = 'w' or 'wp' computes the wavelet or the wavelet packet decomposition using lifting, at level LEVEL.

Instead of a lifted wavelet name, you may use the associated lifting scheme LS: lwt2 (X, LS, . . . ) instead of LWT2 (X, W, . . .).

For more information about lifting schemes, see lsinfo.

```
Tips
Examples
```

```
% Start from the Haar wavelet and get the
```

% Start from the Haar wavelet and get the
% corresponding lifting scheme.
% corresponding lifting scheme.
lshaar = liftwave('haar');
lshaar = liftwave('haar');
% Add a primal ELS to the lifting scheme.
% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
lsnew = addlift(lshaar,els);
% Perform LWT at level 1 of a simple image.
% Perform LWT at level 1 of a simple image.
x = reshape(1:16,4,4);
x = reshape(1:16,4,4);
[cA,cH,cV,cD] = lwt2(x,lsnew)
[cA,cH,cV,cD] = lwt2(x,lsnew)
cA =
cA =
5.7500 22.7500
5.7500 22.7500
10.0000 27.0000
10.0000 27.0000
cH =
cH =
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
cV =
cV =
4.0000 4.0000
4.0000 4.0000
4.0000 4.0000

```
 4.0000 4.0000
```

```
CD =
 0
 0
 Perform integer LWT of the same image.
lshaarInt = liftwave('haar','int2int');
lsnewInt = addlift(lshaarInt,els);
[cAint,cHint,cVint,cDint] = lwt2(x,lsnewInt)
cAint =
 3 11
 5 13
cHint =
 1
 1
cVint =
 4
 4
cDint =
 0
 0
```


# Algorithms This function implements the polyphase algorithm. <br> lwt reduces to dwt with zero-padding extension mode and without extra-coefficients. <br> References Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley-Cambridge Press. <br> Sweldens, W. (1998), "The Lifting Scheme: a Construction of Second Generation of Wavelets," SIAM J. Math. Anal., 29 (2), pp. 511-546. 

## See Also <br> ilwt2

## Purpose

Extract or reconstruct 1-D LWT wavelet coefficients
Syntax $\quad Y=$ lwtcoef (TYPE, XDEC, LS, LEVEL, LEVEXT)
Y = lwtcoef(TYPE,XDEC, W,LEVEL,LEVEXT)

## Description

Y = lwtcoef(TYPE, XDEC, LS, LEVEL, LEVEXT) returns the coefficients or the reconstructed coefficients of level LEVEXT, extracted from XDEC, the LWT decomposition at level LEVEL obtained with the lifting scheme LS.
The valid values for TYPE are

| TYPE Values | Description |
| :--- | :--- |
| ' a' | Approximations |
| 'd' | Details |
| 'ca' | Coefficients of approximations |
| 'cd ' | Coefficients of details |

Y = lwtcoef(TYPE, XDEC, W, LEVEL, LEVEXT) returns the same output using W, which is the name of a lifted wavelet.

## Examples

```
% Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');
% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
% Perform LWT at level 2 of a simple signal.
x = 1:8;
xDec = lwt(x,lsnew,2)
xDec =
```

```
 4.3438 0.7071
 2.0000
 0.7071
% Extract approximation coefficients of level 1.
ca1 = lwtcoef('ca',xDec,lsnew,2,1)
ca1 =
 1.9445 4.9497 7.7782 10.6066
% Reconstruct approximations and details.
a1 = lwtcoef('a',xDec,lsnew,2,1)
a1 =
\begin{tabular}{llllll}
1.3750 & 1.3750 & 3.5000 & 3.5000 & 5.5000 & 5.5000
\end{tabular}
 7.5000 7.5000
a2 = lwtcoef('a',xDec,lsnew,2,2)
a2 =
2.1719
2.1719
2.1719
2.1719
6.5156
6.5156
6.5156
6.5156
d1 = lwtcoef('d',xDec,lsnew,2,1)
d1 \(=\)
\begin{tabular}{llllll}
-0.3750 & 0.6250 & -0.5000 & 0.5000 & -0.5000 & 0.5000 \\
-0.5000 & 0.5000 & & & &
\end{tabular}
d2 = lwtcoef('d',xDec,lsnew,2,2)
d2 =
 -0.7969 -0.7969 1.3281 1.3281 -1.0156 -1.0156
```

```
 0.9844 0.9844
% Check perfect reconstruction.
err = max(abs(x-a2-d2-d1))
err =
 9.9920e-016
```

See Also ilwt | lwt

Purpose
Extract or reconstruct 2-D LWT wavelet coefficients

## Syntax

$Y=1 w t c o e f 2(T Y P E, X D E C, L S, L E V E L, L E V E X T)$
$Y$ = lwtcoef2(TYPE,XDEC,W,LEVEL,LEVEXT)
$Y=$ lwtcoef2(TYPE, XDEC, LS, LEVEL, LEVEXT) returns the coefficients or the reconstructed coefficients of level LEVEXT, extracted from XDEC, the LWT decomposition at level LEVEL obtained with the lifting scheme LS.

The valid values for TYPE are listed in this table.

| TYPE Values | Description |
| :---: | :---: |
| 'a' | Approximations |
| 'h' | Horizontal details |
| 'v' | Vertical details |
| 'd' | Diagonal details |
| 'ca' | Coefficients of approximations |
| 'ch' | Coefficients of horizontal details |
| 'cv' | Coefficients of vertical details |
| 'cd' | Coefficients of diagonal details |

Y = lwtcoef2(TYPE,XDEC, W, LEVEL, LEVEXT) returns the same output using W , which is the name of a lifted wavelet.

Tips

Examples
If XDEC is obtained from an indexed image analysis or a truecolor image analysis, it is an m-by-n matrix or an m-by-n-by-3 array, respectively.

For more information on image formats, see the image and imfinfo reference pages.
\% Start from the Haar wavelet and get the \% corresponding lifting scheme.

```
lshaar = liftwave('haar');
% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
% Perform LWT at level 2 of a simple image.
x = reshape(1:16,4,4);
xDec = lwt2(x,lsnew,2)
xDec =
 27.4375 4.0000 17.0000 4.0000
 1.0000 0 1.0000 0
 4.2500 4.0000 0.0000 4.0000
 1.0000 0 1.0000 0
% Extract approximation coefficients of level 1.
ca1 = lwtcoef2('ca',xDec,lsnew,2,1)
ca1 =
 5.7500 22.7500
 10.0000 27.0000
% Reconstruct approximations and details.
a1 = lwtcoef2('a',xDec,lsnew,2,1)
a1 =
\begin{tabular}{llll}
2.8750 & 2.8750 & 11.3750 & 11.3750 \\
2.8750 & 2.8750 & 11.3750 & 11.3750 \\
5.0000 & 5.0000 & 13.5000 & 13.5000 \\
5.0000 & 5.0000 & 13.5000 & 13.5000
\end{tabular}
a2 = lwtcoef2('a',xDec,lsnew,2,2)
```

```
a2 =
\begin{tabular}{llll}
6.8594 & 6.8594 & 6.8594 & 6.8594 \\
6.8594 & 6.8594 & 6.8594 & 6.8594 \\
6.8594 & 6.8594 & 6.8594 & 6.8594 \\
6.8594 & 6.8594 & 6.8594 & 6.8594
\end{tabular}
h1 = lwtcoef2('h',xDec,lsnew,2,1)
h1 =
\begin{tabular}{rrrr}
-0.3750 & -0.3750 & -0.3750 & -0.3750 \\
0.6250 & 0.6250 & 0.6250 & 0.6250 \\
-0.5000 & -0.5000 & -0.5000 & -0.5000 \\
0.5000 & 0.5000 & 0.5000 & 0.5000
\end{tabular}
v1 = lwtcoef2('v',xDec,lsnew,2,1)
v1 =
\begin{tabular}{llll}
-1.5000 & 2.5000 & -2.0000 & 2.0000 \\
-1.5000 & 2.5000 & -2.0000 & 2.0000 \\
-1.5000 & 2.5000 & -2.0000 & 2.0000 \\
-1.5000 & 2.5000 & -2.0000 & 2.0000
\end{tabular}
d1 = lwtcoef2('d',xDec,lsnew,2,1)
d1 =
\begin{tabular}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{tabular}
h2 = lwtcoef2('h',xDec,lsnew,2,2)
h2 =
```

| -0.7969 | -0.7969 | -0.7969 | -0.7969 |
| ---: | ---: | ---: | ---: |
| -0.7969 | -0.7969 | -0.7969 | -0.7969 |
| 1.3281 | 1.3281 | 1.3281 | 1.3281 |
| 1.3281 | 1.3281 | 1.3281 | 1.3281 |

v2 = lwtcoef2('v',xDec,lsnew,2,2)
v2 =

| -3.1875 | -3.1875 | 5.3125 | 5.3125 |
| :--- | :--- | :--- | :--- |
| -3.1875 | -3.1875 | 5.3125 | 5.3125 |
| -3.1875 | -3.1875 | 5.3125 | 5.3125 |
| -3.1875 | -3.1875 | 5.3125 | 5.3125 |

d2 = lwtcoef2('d',xDec,lsnew,2,2)
d2 =
1.0e-015 *

| 0.2498 | 0.2498 | -0.4163 | -0.4163 |
| ---: | ---: | ---: | ---: |
| 0.2498 | 0.2498 | -0.4163 | -0.4163 |
| -0.4163 | -0.4163 | 0.6939 | 0.6939 |
| -0.4163 | -0.4163 | 0.6939 | 0.6939 |

\% Check perfect reconstruction.
err $=\max (\max (a b s(x-a 2-h 2-v 2-d 2-h 1-v 1-d 1)))$
err $=$
3.5527e-015

Purpose
Multisignals 1-D clustering
Syntax
S = mdwtcluster (X)
S = mdwtcluster(X,'PropName1',PropVal1,'PropName2', PropVal2, ...)

Description
$S=$ mdwtcluster $(X)$ constructs clusters from a hierarchical cluster tree. The input matrix $X$ is decomposed in row direction using the DWT function with the haar wavelet and the maximum allowed level.

S =
mdwtcluster(X,'PropName1',PropVal1,'PropName2',PropVal2,....) allows you to modify some properties. The valid choices for PropName are:

| 'dirDec' | ' $r^{\prime}$ ' (row) or 'c' (column). Default value is <br> ' $r$ '. |
| :--- | :--- |
| 'level' | Level of the DWT decomposition. Default <br> value is: <br> level=fix(log2 (size $(X, d))$ ) <br> where d=1 or d=2, depending on the dirDec <br> value. |
| 'wname' | Wavelet name used for DWT. Default value <br> is 'haar'. |
| 'dwtEXTM' | DWT extension mode (see dwtmode). |
| 'pdist' | See Statistics Toolbox ${ }^{\text {TM }}$ pdist function. <br> Default value is 'euclidean'. |
| 'linkage' | See Statistics Toolbox linkage function. <br> Default value is 'ward'. |


| 'maxclust' | Number of clusters. Default value is 6. The input variable can be a vector. |
| :---: | :---: |
| 'lst2clu' | Cell array that contains the list of data to classify. <br> If $N$ is the level of decomposition, the allowed name values for the cells are: <br> - 's' - Signal <br> - 'aj' - Approximation at level j <br> - 'dj' - Detail at level j <br> - 'caj' - Coefficients of approximation at level j <br> - 'cdj ' - Coefficients of detail at level j <br> Default value is \{'s';'ca1';...;'caN'\}. |

The output structure $S$ is such that for each partition $j$ :

| S.Idx(:, j) | Contains the cluster numbers obtained from <br> the hierarchical cluster tree (see cluster in <br> the Statistics Toolbox software). |
| :--- | :--- |
| S.Incons (: , j) | Contains the inconsistent values of each <br> non-leaf node in the hierarchical cluster tree <br> (see Statistics Toolbox software function <br> inconsistent). |
| S.Corr(j) | Contains the cophenetic correlation <br> coefficients of the partition (see Statistics <br> Toolbox software function cophenet). |

Note If maxclustVal is a vector, then IdxCLU is a multidimensional array such that $\operatorname{IdxCLU}(:, j, k)$ contains the cluster numbers obtained from the hierarchical cluster tree for $k$ clusters.

```
Examples load elecsig10
lst2clu = {'s','ca1','ca3','ca6'};
% Compute the structure resulting from multisignal clustering
S = mdwtcluster(signals,'maxclust',4,'lst2clu',lst2clu)
S =
 IdxCLU: [70x4 double]
 Incons: [69x4 double]
 Corr: [0.7920 0.7926 0.7947 0.7631]
% Retrieve indices of clusters
IdxCLU = S.IdxCLU;
% Plot the first cluster
plot(signals(IdxCLU(:,1)==1,:)','r');
hold on;
% Plot the third clustering
plot(signals(IdxCLU(:,1)==3,:)','b')
```


\% Check the equality of partitions equalPART $=$ isequal(IdxCLU(:,1), $\operatorname{IdxCLU}(:, 3))$ equalPART =

1
\% So we can see that we obtain the same partitions using \% coefficents of approximation at level 3 instead of original \% signals. Much less information is then used.

See Also mdwtdec | wavedec

Purpose
Multisignal 1-D wavelet decomposition

```
DEC = mdwtdec(DIRDEC,X,LEV,WNAME)
DEC = mdwtdec(DIRDEC,X,LEV,LoD,HiD,LoR,HiR)
DEC = mdwtdec(...,'mode',EXTMODE)
```


## Description

DEC $=$ mdwtdec (DIRDEC, $\mathrm{X}, \mathrm{LEV}$, WNAME) returns the wavelet decomposition at level LEV of each row (if DIRDEC = ' $r$ ') or each column (if DIRDEC $=$ ' c ') of matrix $X$, using the wavelet WNAME.

The output DEC is a structure with the following fields:

| 'dirDec' | Direction indicator: 'r' (row) or 'c' (column) |
| :--- | :--- |
| 'level' | Level of the DWT decomposition |
| 'wname' | Wavelet name |
| 'dwtFilters ' | Structure with four fields LoD, HiD, LoR, and <br> HiR |
| 'dwtEXTM' | DWT extension mode (see dwtmode) |
| 'dwtShift' | DWT shift parameter (0 or 1) |
| 'dataSize' | Size of X |
| 'ca' | Approximation coefficients at level LEV |
| 'cd' | Cell array of detail coefficients, from level 1 <br> to level LEV |

Coefficients $C A$ and $C D\{k\}$ (for $k=1$ to LEV) are matrices and are stored in rows if DIRDEC $=$ ' $r$ ' or in columns if DIRDEC $={ }^{\prime} c$ '.

DEC = mdwtdec(DIRDEC, $\mathrm{X}, \mathrm{LEV}$, LoD, HiD, LoR, HiR) uses the four filters instead of the wavelet name.

DEC $=$ mdwtdec (...,'mode', EXTMODE) computes the wavelet decomposition with the EXTMODE extension mode that you specify (see dwtmode for the valid extension modes).

```
Examples \% Load original 1D-multisignal.
load thinker
\% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r',X,2,'db2')
dec =
 dirDec: 'r'
 level: 2
 wname: 'db2'
 dwtFilters: [1x1 struct]
 dwtEXTM: 'sym'
 dwtShift: 0
 dataSize: [192 96]
 ca: [192x26 double]
 cd: \{[192x49 double] [192x26 double]\}
\% Compute the associated filters of db2 wavelet.
[LoD,HiD,LoR,HiR] = wfilters('db2');
\% Perform a decomposition at level 2 using filters.
decBIS \(=\) mdwtdec ('r', X, 2, LoD, HiD,LoR,HiR)
decBIS =
 dirDec: 'r'
 level: 2
 wname: '
 dwtFilters: [1x1 struct]
 dwtEXTM: 'sym'
 dwtShift: 0
 dataSize: [192 96]
 ca: [192x26 double]
 cd: \{[192x49 double] [192x26 double]\}
```

References

```
Daubechies, I. , Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed., 1992.
```


## mdwtdec

Mallat, S., "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, 1989, pp. 674-693.

Meyer, Y. , Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also
mdwtdec | wavedec
Purpose Multisignal 1-D wavelet reconstruction
Syntax X = mdwtrec (DEC)
X = mdwtrec(DEC,IDXSIG)
Y = mdwtrec(DEC,TYPE,LEV)
A = mdwtrec(DEC,'a')
A = mdwtrec(DEC, 'a', LEVDEC)
D = mdwtrec(DEC,'d')
$C A=$ mdwtrec (DEC, 'ca')
CA = mdwtrec(DEC,'ca',LEVDEC)
CD = mdwtrec(DEC,'cd',MODE)
CFS = mdwtrec (DEC,'cfs', MODE)
Y = mdwtrec(...,IDXSIG)

## Description

$X=$ mdwtrec (DEC) returns the original matrix of signals, starting from the wavelet decomposition structure DEC (see mdwtdec).
X = mdwtrec(DEC, IDXSIG) reconstructs the signals whose indices are given by the vector IDXSIG.
Y = mdwtrec(DEC,TYPE,LEV) extracts or reconstructs the detail or approximation coefficients at level LEV depending on the TYPE value. The maximum value for LEV is LEVDEC = DEC.level.
When TYPE is equal to:

- 'cd ' or 'ca', coefficients of level LEV are extracted.
- 'd' or 'a', coefficients of level LEV are reconstructed.
- 'a' or 'ca', LEV must be such that $0 \leq \operatorname{LEV} \leq$ LEVDEC.
- 'd' or 'cd', LEV must be such that $1 \leq$ LEV $\leq$ LEVDEC.
$A=$ mdwtrec(DEC,' $a^{\prime}$ ) is equivalent to $A=$ mdwtrec (DEC, 'a', LEVDEC).
$D=m d w t r e c\left(D E C, d^{\prime}\right)$ returns a matrix containing the sum of all the details, so that $X=A+D$.
$C A=$ mdwtrec (DEC,'ca') is equivalent to $C A=$ mdwtrec(DEC, 'ca',LEVDEC).
$C D=$ mdwtrec(DEC, 'cd', MODE) returns a matrix containing all the detail coefficients.

CFS $=$ mdwtrec (DEC, 'cfs' , MODE) returns a matrix containing all the coefficients.

For MODE = 'descend' the coefficients are concatened from level LEVDEC to level 1 and MODE = 'descend' concatenates from level 1 to level LEVDEC). The default is MODE $=$ 'descend'. The concatenation is made row-wise if DEC.dirDEC $=$ ' $r$ ' or column-wise if DEC.dirDEC $=$ 'c'.
$Y=$ mdwtrec (..., IDXSIG) extracts or reconstructs the detail or the approximation coefficients for the signals whose indices are given by the vector IDXSIG.

## Examples

```
% Load original 1D-multisignal.
load thinker
% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r',X,2,'db2');
% Reconstruct the original matrix of signals, starting from
% the wavelet decomposition structure dec.
XR = mdwtrec(dec);
% Compute the reconstruction error.
errREC = max(max(abs(X-XR)))
errREC =
 2.1026e-010
% Reconstruct the original signal 31, the corresponding
% approximation at level 2, details at levels 1 and 2.
Y = mdwtrec(dec,31);
A2 = mdwtrec(dec,'a',2,31);
D2 = mdwtrec(dec,'d',2,31);
D1 = mdwtrec(dec,'d',1,31);
```

```
% Compute the reconstruction error for signal 31.
errREC = max(abs(Y-A2-D2-D1))
errREC =
 6.8390e-014
```

References Daubechies, I., Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed., 1992.

Mallat, S., "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, 1989, pp. 674-693.

Meyer, Y., Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also mdwtdec | waverec

Purpose Approximation quality metrics

```
Syntax
[PSNR,MSE,MAXERR,L2RAT] = measerr(X,XAPP) [...] = measerr(...,BPS)
```


## Description

## Input Arguments

Output Arguments
[PSNR, MSE , MAXERR, L2RAT] = measerr (X, XAPP) returns the peak signal-to-noise ratio, PSNR, mean square error, MSE, maximum squared error, MAXERR, and ratio of squared norms, L2RAT, for an input signal or image, $X$, and its approximation, XAPP.
[...] = measerr(..., BPS) uses the bits per sample, BPS, to determine the peak signal-to-noise ratio.

## X

$X$ is a real-valued signal or image.

## XAPP

XAPP is a real-valued signal or image approximation with a size equal to that of the input data, $X$.

## BPS

BPS is the number of bits per sample in the data.

## Default: 8

PSNR
PSNR is the peak signal-to-noise ratio in decibels (dB). The PSNR is only meaningful for data encoded in terms of bits per sample, or bits per pixel. For example, an image with 8 bits per pixel contains integers from 0 to 255 .

## MSE

The mean square error (MSE) is the squared norm of the difference between the data and the approximation divided by the number of elements.

## MAXERR

MAXERR is the maximum absolute squared deviation of the data, $X$, from the approximation, XAPP.

## L2RAT

L2RAT is the ratio of the squared norm of the signal or image approximation, XAPP, to the input signal or image, $X$.

## Definitions Peak Signal to Noise Ratio (PSNR)

The following equation defines the PSNR:

$$
20 \log _{10}\left(\frac{2^{B}-1}{\sqrt{M S E}}\right)
$$

where $M S E$ represents the mean square error and $B$ represents the bits per sample.

## Mean Square Error (MSE)

The mean square error between a signal or image, $X$, and an approximation, $Y$, is the squared norm of the difference divided by the number of elements in the signal or image:

$$
\frac{\|X-Y\| \|^{2}}{N}
$$

## Examples

Approximate an image and calculate approximation quality metrics.

```
load woman;
Xapp = X;
Xapp(X<=50) = 1;
```

```
[psnr,mse,maxerr,L2rat] = measerr(X,Xapp);
figure; colormap(map);
subplot(1,2,1); image(X);
subplot(1,2,2); image(Xapp);
```

Measure approximation quality in an RGB image.

```
X = imread('africasculpt.jpg');
Xapp = X;
Xapp(X<=100) = 1;
[psnr,mse,maxerr,L2rat] = measerr (X,Xapp)
figure;
subplot(1,2,1); image(X);
subplot(1,2,2); image(Xapp);
```


## References

See Also wden I wdencmp

Huynh-Thu, Q.Scope of validity of PSNR in image /video quality assessment, Electronics Letters, 44, 2008, pp. 800-801.

## Tutorials

- "Denoising and Nonparametric Function Estimation"


## Purpose Mexican hat wavelet

## Syntax <br> [PSI,X] = mexihat(LB,UB,N)

Description

## Examples

lb = -5; ub = 5; n = 1000;
\% Compute and plot Mexican hat wavelet. [psi,x] = mexihat(lb,ub, n); plot(x,psi), title('Mexican hat wavelet')


See Also waveinfo

## Purpose <br> Meyer wavelet

## Syntax

[PHI,PSI,T] = meyer(LB,UB,N)

Description

Examples

```
% Set effective support and grid parameters.
```

lb $=$-8; ub $=8$; $n=1024$;
\% Compute and plot Meyer wavelet and scaling functions.
[phi,psi,x] = meyer(lb,ub,n);
subplot(211), plot(x,psi)
title('Meyer wavelet')
subplot(212), plot(x,phi)
title('Meyer scaling function')


Algorithms

References $\quad \begin{aligned} & \text { Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference } \\ & \text { series in applied mathematics, SIAM Ed., pp. 117-119, 137, } 152 .\end{aligned}$
See Also
Starting from an explicit form of the Fourier transform $\hat{\phi}$ of $\varphi$, meyer computes the values of $\hat{\phi}$ on a regular grid, and then the values of $\varphi$ are computed using instdfft, the inverse nonstandard discrete FFT.

The procedure for $\psi$ is along the same lines.
meyeraux | wavefun | waveinfo

## Purpose

Meyer wavelet auxiliary function
Syntax $\quad Y=\operatorname{meyeraux}(X)$
Description
$Y=$ meyeraux $(X)$ returns values of the auxiliary function used for Meyer wavelet generation evaluated at the elements of the vector or matrix $X$.

The function is

$$
35 x^{4}-84 x^{5}+70 x^{6}-20 x^{7}
$$

See Also
meyer

## Purpose <br> Morlet wavelet

## Syntax <br> [PSI,X] = morlet(LB,UB,N)

Description
$[P S I, X]=\operatorname{morlet}(\mathrm{LB}, \mathrm{UB}, \mathrm{N})$ returns values of the Morlet wavelet on an $N$ point regular grid in the interval [LB, UB].

Output arguments are the wavelet function PSI computed on the grid $x$, and the grid X .

This wavelet has [-4 4] as effective support. Although [-4 4] is the correct theoretical effective support, a wider effective support, [-8 8], is used in the computation to provide more accurate results.

$$
\psi(x)=e^{-x^{2} / 2} \cos (5 x)
$$

## Examples

```
% Set effective support and grid parameters.
lb = -4; ub = 4; n = 1000;
% Compute and plot Morlet wavelet.
[psi,x] = morlet(lb,ub,n);
plot(x,psi), title('Morlet wavelet')
```

Morlet wavelet


See Also
waveinfo

Purpose
Multisignal 1-D compression using wavelets

```
Syntax
[XC,DECCMP,THRESH] = mswcmp('cmp',DEC,METH)
[XC,DECCMP,THRESH] = mswcmp('cmp',DEC,METH,PARAM)
[XC,THRESH] = mswcmp('cmpsig',...)
[DECCMP,THRESH] = mswcmp('cmpdec',...)
THRESH = mswcmp('thr',...)
[...] = mswcmp(OPTION,DIRDEC,X,WNAME,LEV,METH)
 [...] = mswcmp(OPTION,DIRDEC,X,WNAME,LEV,METH,PARAM)
[...] = mswcmp(...,S_OR_H)
 [...] = mswcmp(...,S_OR_H,KEEPAPP)
 [...] = mswcmp(...,S_OR_H,KEEPAPP,IDXSIG)
```


## Description

mswcmp computes thresholds and, depending on the selected option, performs compression of 1-D signals using wavelets.
[XC, DECCMP, THRESH] = mswcmp('cmp', DEC, METH) or [XC,DECCMP,THRESH] = mswcmp('cmp',DEC,METH, PARAM) returns a compressed (indicated by 'cmp' input) version XC of the original multisignal matrix $X$, whose wavelet decomposition structure is DEC. The output XC is obtained by thresholding the wavelet coefficients: DECCMP, which is the wavelet decomposition associated with XC (see mdwtdec), and THRESH is the matrix of threshold values. The input METH is the name of the compression method and PARAM is the associated parameter, if required.
Valid compression methods METH are shown in the following tables. For methods that use an associated parameter, the range of allowable PARAM values is also shown.

| 'rem_n0' | Remove near 0 |
| :--- | :--- |
| 'bal_sn' | Balance sparsity-norm |
| 'sqrtbal_sn' | Balance sparsity-norm (sqrt) |
| 'scarce' | Scarce, PARAM (any number) |
| 'scarcehi' | Scarce high, $2.5 \leq$ PARAM $\leq 10$ |


| 'scarceme ${ }^{\prime}$ | Scarce medium, $1.5 \leq$ PARAM $\leq 2.5$ |
| :--- | :--- |
| 'scarcelo' | Scarce low, $1 \leq$ PARAM $\leq 2$ |

PARAM is a sparsity parameter, and it should be such that: $1 \leq$ PARAM $\leq$ 10. For scarce method no control is done.

| 'L2_perf' | Energy ratio |
| :--- | :--- |
| 'NO_perf' | Zero coefficients ratio |

PARAM is a real number which represents the required performance:
$0 \leq$ PARAM $\leq 100$.

| 'glb_thr' | Global threshold |
| :--- | :--- |

PARAM is a real positive number.

| 'man_thr' | Manual method |
| :--- | :--- |

PARAM is an NbSIG-by-NbLEV matrix or NbSIG-by-(NbLEV+1) matrix such that:

-     - PARAM ( $i, j$ ) is the threshold for the detail coefficients of level $j$ for the ith signal ( $1 \leq \mathrm{j} \leq \mathrm{NbLEV}$ ).
-     - PARAM ( $\mathrm{i}, \mathrm{NbLEV}+1$ ) is the threshold for the approximation coefficients for the ith signal (if KEEPAPP is 0 ).

Where NbSIG is the number of signals and NbLEV the number of levels of decomposition.
[XC,THRESH] = mswcmp('cmpsig',...) or [DECCMP,THRESH] = mswcmp('cmpdec',...) or THRESH = mswcmp('thr',...) Instead of the 'cmp' input OPTION, you can use 'cmpsig', 'cmpdec' or 'thr' to select other output
arguments. 'thr' returns the computed thresholds, but compression is not performed.
[...] = mswcmp(OPTION,DIRDEC,X,WNAME,LEV,METH)
[...] = mswcmp(OPTION,DIRDEC,X,WNAME,LEV,METH,PARAM) The decomposition structure input argument DEC can be replaced by four arguments: DIRDEC, X, WNAME, and LEV. Before performing a compression or computing thresholds, the multisignal matrix $X$ is decomposed at level LEV using the wavelet WNAME, in the direction DIRDEC.
[...] $=$ mswcmp (..., S_OR_H)
[...] $=$ mswcmp(....,S_OR_H,KEEPAPP)
[...] = mswcmp(...,s_OR_H,KEEPAPP,IDXSIG) Three more optional inputs may be used:

- S_OR_H ('s' or 'h') stands for soft or hard thresholding (see mswthresh for more details). Default is ' h '.
- KEEPAPP (true or false) indicates whether to keep approximation coefficients (true) or not (false). Default is false.
- IDXSIG is a vector which contains the indices of the initial signals, or the string 'all'. Default is 'all'.


## Examples

```
% Load original 1D-multisignal.
```

load thinker
\% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r', X,2,'db2');
\% Compress the signals to obtain a percentage of zeros
\% near 95\% for the wavelet coefficients.
[XC,decCMP, THRESH] = mswcmp('cmp',dec,'NO_perf',95);
[Ecmp,PECcmp,PECFScmp] = wdecenergy(decCMP);
\% Plot the original signals 1 and 31, and
\% the corresponding compressed signals.
figure;
plot(X([1 31],:)','r--','linewidth',2); hold on

```
plot(XC([1 31],:)','b','linewidth',2);
grid; set(gca,'Xlim',[1,96])
title('X dashed line and XC solid line')
```



Birgé L.; P. Massart (1997), "From Model Selection to Adaptive Estimation," in D. Pollard (ed), Festchrift for L. Le Cam, Springer, pp. 55-88.

DeVore, R.A.; B. Jawerth, B.J. Lucier (1992), "Image Compression Through Wavelet Transform Coding," IEEE Trans. on Inf. Theory, vol. 38, No 2, pp. 719-746.

Donoho, D.L. (1993), "Progress in Wavelet Analysis and WVD: a Ten Minute Tour," in Progress in Wavelet Analysis and Applications, Y. Meyer, S. Roques, pp. 109-128. Frontières Ed.

Donoho, D.L.; I.M. Johnstone(1994), "Ideal Spatial Adaptation by Wavelet Shrinkage," Biometrika, vol. 81, pp. 425-455.

Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), "Wavelet Shrinkage: Asymptopia," Jour. Roy. Stat. Soc., series B, vol. 57 no. 2, pp. 301-369.

Donoho, D.L.; I.M. Johnstone, "Ideal De-noising in an Orthonormal Basis Chosen from a Library of Bases," C.R.A.S. Paris, t. 319, Ser. I, pp. 1317-1322.
Donoho, D.L. (1995), "De-noising by Soft-thresholding," IEEE Trans. on Inf. Theory, 41, 3, pp. 613-627.

See Also
mdwtdec | mdwtrec | mswthresh | wthresh

## Purpose

Multisignal 1-D wavelet compression scores

## Syntax

Description
[THR,L2SCR,NOSCR,IDXSORT] = mswcmpscr(DEC)
[THR,L2SCR, NOSCR, IDXSORT] = mswcmpscr(DEC) computes four matrices: thresholds THR, compression scores L2SCR and NOSCR, and indices IDXSORT. The decomposition DEC corresponds to a matrix of wavelet coefficients CFS obtained by concatenation of detail and (optionally) approximation coefficients, where

```
CFS = [cd{DEC.level}, ... , cd{1}] or CFS =
[ca, cd{DEC.level}, ... , cd{1}]
```

The concatenation is made rowwise if DEC. dirDec is equal to ' $r$ ' or columnwise if DEC. dirDec is equal to ' c ' .

If NbSIG is the number of original signals and NbCFS the number of coefficients for each signal (all or only the detail coefficients), then CFS is an NbSIG-by-NbCFS matrix. Therefore,

- THR, L2SCR, NOSCR are NbSIG-by-(NbCFS+1) matrices
- IDXSORT is an NbSIG-by-NbCFS matrix
- THR (: ,2:end) is equal to CFS sorted by row in ascending order with respect to the absolute value.
- For each row, IDXSORT contains the order of coefficients and $\operatorname{THR}(:, 1)=0$.

For the ith signal:

- L2SCR( $\mathrm{i}, \mathrm{j}$ ) is the percentage of preserved energy (L2-norm), corresponding to a threshold equal to CFS(i,j-1) ( $2 \leq \mathrm{j} \leq \operatorname{NbCFS}$ ), and $\operatorname{L2SCR}(:, 1)=100$.
- $\operatorname{NOSCR}(i, j)$ is the percentage of zeros corresponding to a threshold equal to $\operatorname{CFS}(\mathrm{i}, \mathrm{j}-1)(2 \leq \mathrm{j} \leq \operatorname{NbCFS})$, and $\operatorname{NOSCR}(:, 1)=0$.

Three more optional inputs may be used:

```
[...] = mswcmpscr(...,S_OR_H,KEEPAPP,IDXSIG)
```

- S_OR_H ('s' or 'h') stands for soft or hard thresholding (see mswthresh for more details).
- KEEPAPP (true or false) indicates whether to keep approximation coefficients (true) or not (false).
- IDXSIG is a vector that contains the indices of the initial signals, or the string 'all'.

The defaults are, respectively, 'h', false and 'all'.

## Examples

```
% Load original 1D-multisignal.
```

load thinker
\% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r',X,2,'db2');
\% Compute compression performances for soft an hard thresholding.
[THR_S,L2SCR_S,NOSCR_S] = mswcmpscr(dec,'s');
[THR_H,L2SCR_H,NOSCR_H] = mswcmpscr(dec,'h');

## References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed. <br> Mallat, S. (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674-693. <br> Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also mdwtdec | mdwtrec | ddencmp | wdencmp

## Purpose

Syntax

Description

## Examples

Multisignal 1-D compression thresholds and performances
[THR_VAL,L2_Perf,NO_Perf] = mswcmptp(DEC,METH)
[THR_VAL,L2_Perf,NO_Perf] = mswcmptp(DEC,METH,PARAM)
[THR_VAL,L2_Perf,NO_Perf] = mswcmptp(DEC,METH) or [THR_VAL,L2_Perf,NO_Perf] = mswcmptp(DEC,METH, PARAM) computes the vectors THR_VAL, L2_Perf and NO_Perf obtained after a compression using the METH method and, if required, the PARAM parameter (see mswcmp for more information on METH and PARAM).

For the ith signal:

- THR_VAL(i) is the threshold applied to the wavelet coefficients. For a level dependent method, THR_VAL( $i, j)$ is the threshold applied to the detail coefficients at level $j$.
- L2_Perf(i) is the percentage of energy (L2_norm) preserved after compression.
- NO_Perf(i) is the percentage of zeros obtained after compression.

You can use three more optional inputs:

```
[...] = mswcmptp(...,S_OR_H,KEEPAPP,IDXSIG)
```

- S_OR_H ('s' or 'h') stands for soft or hard thresholding (see mswthresh for more details).
- KEEPAPP (true or false) indicates whether to keep approximation coefficients (true) or not (false)
- IDXSIG is a vector which contains the indices of the initial signals, or the string 'all'.

The defaults are, respectively, ' h ', false and 'all'.
\% Load original 1D-multisignal.
load thinker
\% Perform a decomposition at level 2 using wavelet db2.

```
dec = mdwtdec('r',X,2,'db2');
% Compute compression thresholds and exact performances
% obtained after a compression using the method 'NO_perf' and
% requiring a percentage of zeros near 95% for the wavelet
% coefficients.
[THR_VAL,L2_Perf,NO_Perf] = mswcmptp(dec,'NO_perf',95);
```

References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed.

Mallat, S. (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674-693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also mdwtdec | mdwtrec | ddencmp | wdencmp

## Purpose

Multisignal 1-D denoising using wavelets
Syntax

```
[XD,DECDEN,THRESH] = mswden('den',...)
[XD,THRESH] = mswden('densig',...)
[DECDEN,THRESH] = mswden('dendec',...)
THRESH = mswden('thr',...)
[...] = mswden(OPTION,DIRDEC,X,WNAME,LEV,METH,PARAM)
[...] = mswden(...,S_OR_H)
[...] = mswden(...,S_OR_H,KEEPAPP)
[...] = mswden(...,S_OR_H,KEEPAPP,IDXSIG)
```


## Description

mswden computes thresholds and, depending on the selected option, performs denoising of 1-D signals using wavelets.
[XD, DECDEN, THRESH] = mswden('den',...) returns a denoised version XD of the original multisignal matrix $X$, whose wavelet decomposition structure is DEC. The output XD is obtained by thresholding the wavelet coefficients, DECDEN is the wavelet decomposition associated to XD (see mdwtdec), and THRESH is the matrix of threshold values. The input METH is the name of the denoising method and PARAM is the associated parameter, if required.

Valid denoising methods METH and associated parameters PARAM are:

| 'rigrsure' | Principle of Stein's Unbiased Risk |
| :--- | :--- |
| 'heursure' | Heuristic variant of the first option |
| 'sqtwolog' | Universal threshold sqrt(2*log(.)) |
| 'minimaxi' | Minimax thresholding (see thselect) |

For these methods PARAM defines the multiplicative threshold rescaling:

| 'one' | No rescaling |
| :--- | :--- |
| 'sln' | Rescaling using a single estimation of level <br> noise based on first level coefficients |
| 'mln' | Rescaling using a level dependent estimation <br> of level noise |

## Penalization methods

| 'penal' | Penal |
| :--- | :--- |
| 'penalhi' | Penal high, $2.5 \mathfrak{R} \leq$ PARAM $\Re \leq 10$ |
| 'penalme' | Penal medium, $1.5 \Re \leq$ PARAM $\mathfrak{R} \leq 2.5$ |
| 'penallo' | Penal low, $1 \mathfrak{R} \leq$ PARAM $\mathfrak{R} \leq 2$ |

PARAM is a sparsity parameter, and it should be such that: $1 \leq$ PARAM $\leq$ 10. For penal method, no control is done.

## Manual method

| 'man_thr' | Manual method |
| :--- | :--- |

PARAM is an NbSIG-by-NbLEV matrix or NbSIG-by-(NbLEV+1) matrix such that:

- PARAM ( $\mathrm{i}, \mathrm{j}$ ) is the threshold for the detail coefficients of level j for the ith signal $(1 \leq \mathrm{j} \leq \mathrm{NbLEV})$.
- PARAM ( $i, N b L E V+1$ ) is the threshold for the approximation coefficients for the ith signal (if KEEPAPP is 0).
where NbSIG is the number of signals and NbLEV the number of levels of decomposition.

Instead of the 'den' input OPTION, you can use 'densig', 'dendec' or 'thr' OPTION to select output arguments:
[XD,THRESH] = mswden('densig',...) or [DECDEN,THRESH] = mswden('dendec',...)

THRESH = mswden('thr',...) returns the computed thresholds, but denoising is not performed.

The decomposition structure input argument DEC can be replaced by four arguments: DIRDEC, X, WNAME and LEV.
[...] = mswden(OPTION,DIRDEC,X,WNAME,LEV,METH, PARAM) before performing a denoising or computing thresholds, the multisignal matrix X is decomposed at level LEV using the wavelet WNAME, in the direction DIRDEC.

You can use three more optional inputs:
[...] = mswden(..., S_OR_H) or
[...] = mswden(..., S_OR_H,KEEPAPP) or
[...] = mswden(...,S_OR_H,KEEPAPP,IDXSIG)

- S_OR_H ('s' or 'h') stands for soft or hard thresholding (see mswthresh for more details).
- KEEPAPP (true or false) indicates whether to keep approximation coefficients (true) or not (false).
- IDXSIG is a vector that contains the indices of the initial signals, or the string 'all'.

The defaults are, respectively, ' h ', false and 'all'.

## Examples

\% Load original 1D-multisignal.
load thinker
\% Perform a decomposition at level 2 using the wavelet db2. dec = mdwtdec('r',X,2,'db2');
\% Denoise signals using the universal method
\% of thresholding (sqtwolog) and the 'sln'
\% threshold rescaling (with a single estimation
\% of level noise, based on first level coefficients). [XD, decDEN,THRESH] = mswden('den',dec,'sqtwolog','sln');
\% Plot the original signals 1 and 31, and the

```
% corresponding denoised signals.
figure;
plot(X([1 31],:)','r--','linewidth',2); hold on
plot(XD([1 31],:)','b','linewidth',2);
grid; set(gca,'Xlim',[1,96])
title('X dashed line and XD solid line')
```



## References

Birgé, L.; P. Massart (1997), "From model selection to adaptive estimation," in D. Pollard (ed), Festchrift for L. Le Cam, Springer, pp. 55-88.

DeVore, R.A.; B. Jawerth, B.J. Lucier (1992), "Image compression through wavelet transform coding," IEEE Trans. on Inf. Theory, vol. 38, No 2, pp. 719-746.

Donoho, D.L. (1993), "Progress in wavelet analysis and WVD: a ten minute tour," in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, pp. 109-128. Frontières Ed.

Donoho, D.L.; I.M. Johnstone(1994), "Ideal spatial adaptation by wavelet shrinkage," Biometrika, vol. 81, pp. 425-455.

Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), "Wavelet shrinkage: asymptopia," Jour. Roy. Stat. Soc.,series B, vol. 57 no. 2, pp. 301-369.

Donoho, D.L.; I.M. Johnstone, "Ideal de-noising in an orthonormal basis chosen from a library of bases," C.R.A.S. Paris, t. 319, Ser. I, pp. 1317-1322.

Donoho, D.L. (1995), "De-noising by soft-thresholding," IEEE Trans. on Inf. Theory, 41, 3, pp. 613-627.

See Also
mdwtdec | mdwtrec | mswthresh | wthresh

Purpose Nondecimated 1-D wavelet transform

```
Syntax WT = ndwt(X,N,'wname')
WT = ndwt(X,N,'wname','mode','ExtM')
WT = ndwt(X,N,WF,...)
```


## Description

ndwt performs a multilevel 1-D nondecimated wavelet decomposition using either a particular wavelet ('wname') or the wavelet filters you specify. The decomposition also uses the specified DWT extension mode (see dwtmode).

WT = ndwt(X,N,'wname') returns a structure which contains the non-decimated wavelet transform of the vector X at the level $\mathrm{N} . \mathrm{N}$ is a positive integer, and 'wname' is a string containing the wavelet name. The default default extension mode is'sym'. For more information on wname, see wfilters.

WT = ndwt (X,N,'wname','mode', 'ExtM') uses the extension mode specified in the string 'ExtM'.

WT is a structure with the fields shown in the table.
Instead of a wavelet you can specify four filters (two for decomposition and two for reconstruction).
$W T=n d w t(X, N, W F, \ldots)$ specifies four filters (two for decomposition and two for reconstruction) instead of a wavelet name. WF is a 1 -by- 4 cell array $\{$ LoD , HiD, LoR, HiR\} or a structure with the four fields ' LoD ', 'HiD', 'LoR', 'HiR'.

| rowvect | Logical value which is true if $X$ is a row vector |
| :--- | :--- |
| level | Level of the decomposition |
| mode | Name of the wavelet transform extension mode |
| filters | Structure with 4 fields, LoD, HiD, LoR, HiR, <br> which contain the filters used for DWT |


| dec | 1 by (level +1$)$ cell array containing the <br> coefficients of the decomposition. dec $\{1\}$ <br> contains the coefficients of the approximation <br> and dec $\{\mathrm{j}\}(\mathrm{j}=2$ to level +1$)$, contains the <br> coefficients of the detail of level (level $+1-\mathrm{j})$ |
| :--- | :--- |
| longs | 1 by (level+2) vector containing the lengths of <br> the components. longs is defined as (where <br> $N$ is the level) |
| longs $(1)=$ length of app. coef. (N) |  |
| longs $(\mathrm{i})=$ length of det. coef. $(N-i+2)$ |  |
| for $i=2, \ldots, N+1$ |  |
| longs $(N+2)=$ length $(X)$. |  |

## Localize Discontinuity with <br> Nondecimated <br> Wavelet <br> Transform

Use fine-scale nondecimated wavelet transform coefficients to localize a discontinuity.

Create signal consisting of a $1 / 2-\mathrm{hz}$ sine wave sampled at 1 kHz with discontinuities at 0.3 and 0.72 seconds.
$\mathrm{t}=$ linspace $(0,1,1000)$;
$x=4 * \sin \left(4 *\right.$ pi*t $\left.^{*}\right)$;
$x=x-\operatorname{sign}(t-3)-\operatorname{sign}(.72-t) ;$
plot(t,x); xlabel('t'); ylabel('x');
grid on;


Obtain the nondecimated wavelet transform of the input signal down to level 4 using the Daubechies extremal phase wavelet with 2 vanishing moments and the default whole-point symmetric extension mode. Reconstruct a signal approximation based on the level-one wavelet coefficients.

```
W = ndwt(x,4,'db2','mode','per');
d1 = indwt(W,'d',1);
```

Plot the original signal and the signal approximation to visualize how the wavelet coefficients localize the discontinuities.

```
subplot(211);
plot(t,x); title('Original Signal');
```

grid on;
subplot(212);
plot(t,d1,'linewidth',2); title('Wavelet Approximation -- Level 1'); grid on;



Specify Extension
Mode for Nondecimated Wavelet Transform

Specify an extension mode different from the default whole-point symmetric extension.

Load the freqbrk signal and obtain the nondecimated wavelet transform down to level 4 using the Daubechies extremal phase wavelet with 2 vanishing moments. Use the periodic extension mode.

## load freqbrk;

W = ndwt(freqbrk,4,'db2','mode','per');

Nondecimated Specify the decomposition and reconstruction filters as a cell or structure array.

Obtain the decomposition and reconstruction filters for the biorthogonal spline wavelet with 3 vanishing moments in the reconstruction wavelet and 5 vanishing moments in the decomposition wavelet. Create a cell array with the scaling and wavelet filters and analyze the freqbrk signal.
[LoD,HiD,LoR,HiR] = wfilters('bior3.5');
WF = \{LoD,HiD,LoR,HiR\};
load freqbrk;
W = ndwt(freqbrk,4,WF);

Use a structure array to input the scaling and wavelet filters.

```
WF1 = struct('LoD',LoD,'HiD',HiD,'LoR',LoR,'HiR',HiR);
W1 = ndwt(freqbrk,4,WF1);
```

See Also dwtmode | indwt | waveinfo | wfilters | wmaxlev

## Purpose Nondecimated 2-D wavelet transform

Syntax $\quad W T=n d w t 2(X, N, ' w n a m e ')$
WT = ndwt2(X,N,'wname','mode','ExtM')
WT $=$ ndwt2( $\mathrm{X}, \mathrm{W}, \ldots$. $)$
WT $=$ ndwt2(X,WF,...)
Description
ndwt2 performs a multilevel 2-D nondecimated wavelet decomposition using a particular wavelet ('wname') or the wavelet filters you specify. The decomposition also uses the specified DWT extension mode (see dwtmode).

WT = ndwt2(X,N,'wname') returns a structure which contains the nondecimated wavelet transform of the vector $X$ at the level $N$. $N$ is a positive integer and 'wname' is a string containing the wavelet name. The default default extension mode is 'sym'. For more information on wname, see wfilters.

WT = ndwt2(X,N,'wname','mode', 'ExtM') uses the extension mode specified in the string 'ExtM'.

WT is a structure with the fields shown in the table.

| sizeINI | Size of the two-dimensional array X |
| :--- | :--- |
| level | Level of the decomposition |
| mode | Name of the wavelet transform extension mode |
| filters | Structure with 4 fields, LoD, HiD, LoR, HiR, <br> which contain the filters used for DWT |


| dec | 1 by $(3 *$ level +1$)$ cell array containing the <br> coefficients of the decomposition. dec $\{1\}$ <br> contains the coefficients of the approximation <br> and dec $\{\mathrm{j}\}\left(j=2\right.$ to $3^{*}$ level +1$)$, contains the <br> coefficients of the details from level level to <br> level 1, three details by level (LH, HL and HH <br> where L is low and H is high) |
| :--- | :--- |
| sizes | $(l e v e l+1)$ by 2 array containing the size of the <br> components |

IWT = ndwt2 $(X, W, \ldots)$ specifies two wavelets (one for each direction) with $W=$ \{'wname1', 'wname2'\} or $W$ is a structure with two fields 'w1', 'w2' containing strings, which are the names of wavelets, one per direction.

Instead of one or two wavelets, you may specify four filters (two for decomposition and two for reconstruction) or $2 \times 4$ filters (one quadruplet per direction):

WT = ndwt2 (X,WF, ...) specifies four filters (two for decomposition and two for reconstruction) or $2 \times 4$ filters (one quadruplet per direction). WF is a cell array ( 1 x 4 ) or ( 2 x 4 ), \{LoD, HiD, LoR, HiR $\}$, or a structure with the four fields 'LoD', 'HiD', 'LoR', 'HiR'.

Examples

```
% Load original image.
load noiswom;
% Decompose X at level 2 using db1.
W1 = ndwt2(X,2,'db1')
W1 =
 sizeINI: [96 96]
 level: 2
 filters: [1x1 struct]
 mode: 'sym'
```

```
 dec: {7x1 cell}
sizes: [3x2 double]
% Decompose X at level 3 using db1 and periodic
% extension mode.
W2 = ndwt2(X,3,'db1','mode','per')
W2 =
 sizeINI: [96 96]
 level: 3
 filters: [1x1 struct]
 mode: 'per'
 dec: {10x1 cell}
 sizes: [4x2 double]
% Decompose X at level 3 using db1 for rows, and db2 for
% columns, using symmetric extension mode.
W3 = ndwt2(X,3,{'db1','db2'},'mode','sym')
W3 =
 sizeINI: [96 96]
 level: 3
 filters: [1x1 struct]
 mode: 'sym'
 dec: {10x1 cell}
 sizes: [4x2 double]
WF = W3.filters
WF =
 LoD: {[0.7071 0.7071] [-0.1294 0.2241 0.8365 0.4830]}
 HiD: {[-0.7071 0.7071] [-0.4830 0.8365 -0.2241 -0.1294]}
 LoR: {[0.7071 0.7071] [0.4830 0.8365 0.2241 -0.1294]}
 HiR: {[0.7071 -0.7071] [-0.1294 -0.2241 0.8365 -0.4830]}
```


## ndwt2

```
% Decompose X using filters given by WF.
W4 = ndwt2(X,3,WF,'mode','sym')
W4 =
 sizeINI: [96 96]
 level: 3
 filters: [1x1 struct]
 mode: 'sym'
 dec: {10x1 cell}
 sizes: [4x2 double]
```

See Also
dwtmode | indwt2 | waveinfo | wfilters | wmaxlev

| Purpose | Perform multisignal 1-D thresholding |
| :---: | :---: |
| Syntax | $Y$ = mswthresh (X, SORH, $T$ ) |
|  | $Y=$ mswthresh( X, SORH, $\mathrm{T},{ }^{\prime} \mathrm{C}^{\prime}$ ) |
|  | $Y=$ mswthresh(X,'s', $\mathrm{T}^{\text {) }}$ |
|  | $Y$ = mswthresh(X,'h', $\mathrm{T}^{\text {) }}$ |

Description
$Y=$ mswthresh (X, SORH, T) returns soft (if SORH='s') or hard (if SORH=' $h$ ') T-thresholding of the input matrix $X$. T can be a single value, a matrix of the same size as $X$ or a vector. In this last case, thresholding is performed rowwise and LT = length $(T)$ must be such that size $(\mathrm{X}, 1) \leq \mathrm{LT}$.
$\mathrm{Y}=$ mswthresh (X,SORH,T, ' $\mathrm{C}^{\prime}$ ) performs a columnwise thresholding and size ( $\mathrm{X}, 2$ ) $\leq \mathrm{LT}$.
$Y=$ mswthresh (X,'s', $T$ ) returns $Y=\operatorname{SIGN}(X) \cdot(|X|-T)+$, soft thresholding is shrinkage.
$Y=$ mswthresh $\left(X, h^{\prime}, T\right)$ returns $Y=X .1 \_(|X|>T)$, hard thresholding is cruder.

See Also mswden \| mswcmp \| wthresh | wden | wdencmp | wpdencmp

Purpose Node ascendants
Syntax $\quad A=\operatorname{nodeasc}(T, N)$
Description
nodeasc is a tree-management utility.
A = nodeasc $(T, N)$ returns the indices of all the ascendants of the node $N$ in the tree $T$ where N can be the index node or the depth and position of the node. A is a column vector with $\mathrm{A}(1)=$ index of node $N$.

A $=$ nodeasc ( $T, N$, 'deppos' $^{\prime}$ ) is a matrix, which contains the depths and positions of all ascendants. $\mathrm{A}(\mathrm{i}, 1)$ is the depth of the i-th ascendant and $\mathrm{A}(\mathrm{i}, 2)$ is the position of the $i$-th ascendant.

The nodes are numbered from left to right and from top to bottom. The root index is 0 .

## Examples $\quad$ \% Create binary tree of depth 3. <br> t = ntree (2,3); <br> $\mathrm{t}=$ nodejoin(t,5); <br> $\mathrm{t}=$ nodejoin( $\mathrm{t}, 4$ ); <br> plot(t)



[^5]
nodeasc(t,[2 2])
ans =
5
2
0
nodeasc(t,[2 2],'deppos')
ans =

$\begin{array}{ll}2 & 2 \\ 1 & 1 \\ 0 & 0\end{array}$
See Also
nodedesc | nodepar | wtreemgr

Purpose Node descendants
Syntax
D = nodedesc ( $T, N$ )
D $=$ nodedesc ( $T, N$, , deppos')

Description

## Examples \%Create binary tree of depth 3. $\mathrm{t}=\mathrm{ntree}(2,3)$; <br> $\mathrm{t}=$ nodejoin(t,5); <br> $\mathrm{t}=$ nodejoin(t,4); <br> plot(t)



[^6]
\% Node descendants.
nodedesc (t,2)
ans =
2
5
6
13
14
nodedesc(t,2,'deppos')
ans =
$1 \quad 1$
$2 \quad 2$
23
36
37

```
nodedesc(t,[\begin{array}{ll}{1}&{1}\end{array}],'deppos')
ans =
 1 1
 2 2
 2 3
 36
```


## nodedesc

```
 3 7
nodedesc(t,[1 1])
ans =
 2
 5
 6
 13
 14
```

See Also nodeasc | nodepar | wtreemgr

## Purpose

Recompose node

$$
\begin{array}{ll}
\text { Syntax } & T=\operatorname{nodejoin}(T, N) \\
& T=\operatorname{nodejoin}(T) \\
& T=\operatorname{nodejoin}(T, 0)
\end{array}
$$

Description nodejoin is a tree-management utility.
$\mathrm{T}=$ nodejoin $(T, N)$ returns the modified tree $T$ corresponding to a recomposition of the node $N$.

The nodes are numbered from left to right and from top to bottom. The root index is 0 .

```
T = nodejoin(T) is equivalent to T = nodejoin(T,0).
```


## Examples

```
% Create binary tree of depth 3.
```

t = ntree (2,3);
\% Plot tree $t$.
plot(t)
\% Change Node Label from Depth_Position to Index \% (see the plot function).


```
% Merge nodes of indices 4 and 5.
t = nodejoin(t,5);
t = nodejoin(t,4);
% Plot new tree t.
plot(t)
```

\% Change Node Label from Depth_Position to Index \% (see the plot function).


See Also
nodesplt

## Purpose Node parent

```
Syntax
F = nodepar(T,N)
F = nodepar(T,N,'deppos')
```


## Description

Examples
\% Create binary tree of depth 3.
t = ntree (2,3);
$\mathrm{t}=$ nodejoin(t,5);
$\mathrm{t}=$ nodejoin(t,4);
plot(t)

\% Change Node Label from Depth_Position to Index
\% (see the plot function).

\% Nodes parent.
nodepar(t,[2 2],'deppos')
ans =
$1 \quad 1$
nodepar(t,[1;7;14])
ans $=$
0

See Also nodeasc | nodedesc | wtreemgr

Purpose Split (decompose) node

## Syntax $\quad T=\operatorname{nodesplt}(T, N)$

Description nodesplt is a tree-management utility.
$\mathrm{T}=$ nodesplt $(T, N)$ returns the modified tree $T$ corresponding to the decomposition of the node $N$.

The nodes are numbered from left to right and from top to bottom. The root index is 0 .

Examples
\% Create binary tree (tree of order 2) of depth 3.
t = ntree(2,3);
\% Plot tree t.
plot(t)
\% Change Node Label from Depth_Position to Index \% (see the plot function).

\% Split node of index 10.
t = nodesplt(t,10);
\% Plot new tree $t$.

```
plot(t)
% Change Node Label from Depth_Position to Index
% (see the plot function).
```



See Also nodejoin

Purpose Determine nonterminal nodes
Syntax $\quad \begin{aligned} N & =\operatorname{noleaves}(T) \\ N & =\operatorname{noleaves}(T, ' d p ')\end{aligned}$
Description
$\mathrm{N}=$ noleaves $(T)$ returns the indices of nonterminal nodes of the tree $T$ (i.e., nodes that are not leaves). N is a column vector.

The nodes are ordered from left to right as in tree $T$.
$\mathrm{N}=$ noleaves( $T, \mathrm{'dp}^{\prime}$ ) returns a matrix N , which contains the depths and positions of nonterminal nodes.
$N(i, 1)$ is the depth of the i-th nonterminal node and $N(i, 2)$ is the position of the i-th nonterminal node.

## Examples

```
% Create initial tree.
ord = 2;
t = ntree(ord,3); % binary tree of depth 3.
t=nodejoin(t,5);
t=nodejoin(t,4);
plot(t)
% Change Node Label from Depth_Position to Index
% (see the plot function).
```



```
% List nonterminal nodes (index).
ntnodes_ind = noleaves(t)
ntnodes_ind =
 O
 1
 2
 3
 6
% List nonterminal nodes (Depth_Position).
ntnodes_depo = noleaves(t,'dp')
ntnodes_depo =
 0
 0
 1
 2 0
 2 3
```


## See Also

leaves

Purpose Number of terminal nodes

## Syntax <br> NB = ntnode( $T$ )

Description ntnode is a tree-management utility.
$\mathrm{NB}=$ ntnode $(T)$ returns the number of terminal nodes in the tree $T$.
The nodes are numbered from left to right and from top to bottom. The root index is 0 .

Examples
\% Create binary tree (tree of order 2) of depth 3. t = ntree (2,3);
\% Plot tree t.
plot(t)


```
% Number of terminal nodes.
ntnode(t)
ans =
 8
```

See Also wtreemgr

## Purpose NTREE constructor

```
Syntax
T = ntree (ORD, D)
T = ntree
T = ntree \((2,0)\)
T = ntree(ORD)
\(\mathrm{T}=\mathrm{ntree}(\) ORD, 0\()\)
\(\mathrm{T}=\mathrm{ntree}(\) ORD, \(\mathrm{D}, \mathrm{S})\)
\(\mathrm{T}=\mathrm{ntree}(\mathrm{ORD}, \mathrm{D}, \mathrm{S}, \mathrm{U})\)
```


## Description

$\mathrm{T}=\mathrm{ntree}(\mathrm{ORD}, \mathrm{D})$ returns an NTREE object, which is a complete tree of order ORD and depth D.

$T=n t r e e(O R D)$ is equivalent to $T=n t r e e(O R D, 0)$.
With $T=$ ntree (ORD, D, S) you can set a "split scheme" for nodes. The split scheme field $S$ is a logical array of size ORD by 1.

The root of the tree can be split and it has ORD children. You can split the j -th child if $\mathrm{S}(\mathrm{j})=1$.

Each node that you can split has the same property as the root node.
With $T=n t r e e(O R D, D, S, U)$ you can, in addition, set a userdata field.
Inputs can be given in another way:
T = ntree('order',ORD,'depth', D,'spsch', S, 'ud', U). For "missing" inputs the defaults are ORD $=2$, $D=0, S=$ ones([1:ORD]) , U = \{\}.
[T,NB] = ntree( ... ) returns also the number of terminal nodes (leaves) of T.

For more information on object fields, type help ntree/get.
Class NTREE (Parent class: WTBO)

## Fields

| wtbo | Parent object |
| :--- | :--- |
| order | Tree order |
| depth | Tree depth |
| spsch | Split scheme for nodes |
| tn | Column vector with terminal node indices |

## Examples

\% Create binary tree (tree of order 2) of depth 3. t2 $=$ ntree $(2,3)$;
\% Plot tree t2. plot(t2)

\% Create a quadtree (tree of order 4) of depth 2. t4 $=$ ntree (4,2,[11 10 1]);
\% Plot tree t4.
plot(t4)

\% Split and merge some nodes using the gui
\% generated by plot (see the plot function).
\% The figure becomes:


## See Also

wtbo

## Purpose

Orthogonal wavelet filter set

## Syntax

Description
[Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt( $W$ )
[Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(W) computes the four filters associated with the scaling filter $W$ corresponding to a wavelet:

| Lo_D | Decomposition low-pass filter |
| :--- | :--- |
| Hi_D | Decomposition high-pass filter |
| Lo_R | Reconstruction low-pass filter |
| Hi_R | Reconstruction high-pass filter |

For an orthogonal wavelet, in the multiresolution framework, we start with the scaling function $\varphi$ and the wavelet function $\Psi$. One of the fundamental relations is the twin-scale relation:

$$
\frac{1}{2} \phi\left(\frac{x}{2}\right)=\sum_{n \in Z} w_{n} \phi(x-n)
$$

All the filters used in dwt and idwt are intimately related to the sequence $\left(w_{n}\right)_{n \in Z}$. Clearly if $\varphi$ is compactly supported, the sequence $\left(w_{n}\right)$ is finite and can be viewed as a FIR filter. The scaling filter $W$ is

- A low-pass FIR filter
- Of length $2 N$
- Of sum 1
- Of norm $\frac{1}{\sqrt{2}}$

For example, for the db3 scaling filter,
load db3
db3

```
db3 =
 0.2352 0.5706 0.3252 -0.0955 -0.0604 0.0249
sum(db3)
ans =
 1.000
 norm(db3)
ans =
 0.7071
```

From filter $W$, we define four FIR filters, of length 2 N and norm 1, organized as follows:

| Filters | Low-Pass | High-Pass |
| :--- | :--- | :--- |
| Decomposition | Lo_D | Hi_D |
| Reconstruction | Lo_R | Hi_R |

The four filters are computed using the following scheme:

where qmf is such that Hi_R and Lo_R are quadrature mirror filters (i.e., $H_{i} \_$R $(k)=(-1)^{k} \operatorname{Lo} R(2 N+1-k)$, for $k=1,2$, , $2 N$ ), and where wrev flips the filter coefficients. So Hi_D and Lo_D are also quadrature mirror filters. The computation of these filters is performed using orthfilt.

```
Examples % Load scaling filter.
load db8; w = db8;
subplot(421); stem(w);
title('Original scaling filter');
% Compute the four filters.
[Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(w);
subplot(423); stem(Lo_D);
title('Decomposition low-pass filter');
subplot(424); stem(Hi_D);
title('Decomposition high-pass filter');
subplot(425); stem(Lo_R);
title('Reconstruction low-pass filter');
subplot(426); stem(Hi_R);
title('Reconstruction high-pass filter');
% Check for orthonormality.
df = [Lo_D;Hi_D];
rf = [Lo_R;Hi_R];
id = df*df'
id =
 1.0000 0
 0 1.0000
id = rf*rf'
id =
 1.0000 0
 0 1.0000
% Check for orthogonality by dyadic translation, for example:
df = [Lo_D O O;Hi_D O O];
dft = [O O Lo_D; O O Hi_D];
zer = df*dft'
zer =
```

```
 1.0e-12 *
 -0.1883 0.0000
 -0.0000-0.1883
% High- and low-frequency illustration.
fftld = fft(Lo_D); ffthd = fft(Hi_D);
freq = [1:length(Lo_D)]/length(Lo_D);
subplot(427); plot(freq,abs(fftld));
title('Transfer modulus: low-pass');
subplot(428); plot(freq,abs(ffthd));
title('Transfer modulus: high-pass')
% Editing some graphical properties,
% the following figure is generated.
```



## References

See Also

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics, SIAM Ed. pp. 117-119, 137, 152.

## Purpose Order terminal nodes of binary wavelet packet tree

```
Syntax [Tn_Pal,Tn_Seq] = otnodes(WPT)
[Tn_Pal,Tn_Seq,I,J] = otnodes(WPT)
[DP_Pal,DP_Seq] = otnodes(WPT,'dp')
```


## Description

## Input <br> Arguments

## Output <br> Arguments

[Tn_Pal,Tn_Seq] = otnodes (WPT) returns the terminal nodes of the binary wavelet packet tree, WPT, in Paley (natural) ordering, Tn_Pal, and sequency (frequency) ordering, Tn_Seq. Tn_Pal and Tn_Seq are $N$-by- 1 column vectors where $N$ is the number of terminal nodes.
[Tn_Pal,Tn_Seq,I, J] = otnodes(WPT) returns the permutations of the terminal node indices such that Tn_Seq $=$ Tn_Pal(I) and Tn_Pal $=$ Tn_Seq(J).
[DP_Pal,DP_Seq] = otnodes (WPT, 'dp') returns the Paley and frequency-ordered terminal nodes in node depth-position format. DP_Pal and DP_Seq are $N$-by-2 matrices. The first column contains the depth index, and the second column contains the position index.

## WPT

Binary wavelet packet tree. You can use treeord to determine the order of your wavelet packet tree.

## dp

String variable indicating that the Paley-ordered or sequency-ordered nodes are returned in depth-position format.

## Tn_Pal

Terminal nodes in Paley (natural) ordering

## Tn_Seq

Terminal nodes in sequency ordering

## DP_Pal

Paley-ordered terminal nodes in depth-position format. This output argument only applies when you use the 'dp' input argument.

## DP_Seq

Sequency-ordered terminal nodes in depth-position format. This output argument only applies when you use the 'dp' input argument.

## Definitions

## Paley (Natural) and Sequency (Frequency) Ordering

The discrete wavelet packet transform iterates on both approximation and detail coefficients at each level. In this transform, $A$ denotes the lowpass (approximation) filter followed by downsampling. $D$ denotes the highpass (detail) filter followed by downsampling. The following figure represents a wavelet packet transform in Paley ordering acting on a time series of length 8. The transform has a depth of two.


Because of aliasing introduced by downsampling, the frequency content extracted by the operator $A D$ is higher than the frequency content extracted by the $D D$ operator. Therefore, the terminal nodes in frequency (sequency) order are: $A A, D A, D D, A D$. The terminal nodes in Paley order have the following indices: $3,4,5,6$. The frequency order has the indices: $3,4,6,5$.

## Examples Order terminal nodes with Paley and frequency ordering:

```
x = randn(8,1);
wpt = wpdec(x,2,'haar');
[Tn_Pal,Tn_Seq] = otnodes(wpt);
% Tn_Pal is [[3 4 5 6]
% Tn_Seq is [[3 4 6 5]
```

Return permutations for Paley and frequency ordering:

```
load noisdopp;
wpt = wpdec(noisdopp,6,'sym4');
[Tn_Pal,Tn_Seq,I,J] = otnodes(wpt);
isequal(Tn_Seq(J),Tn_Pal)
isequal(Tn_Seq,Tn_Pal(I))
```

Order terminal nodes by depth and position:

```
x = randn(8,1);
wpt = wpdec(x,2,'haar');
[DP_Pal,DP_Seq] = otnodes(wpt,'dp');
```

Order terminal nodes from a modified wavelet packet tree:

```
t = wptree(2,2,rand(1,512),'haar');
t = wpsplt(t,4);
t = wpsplt(t,5);
```

```
t = wpsplt(t,10);
plot(t);
[tn_Pal,tn_Seq,I,J] = otnodes(t);
```



## References

See Also

Wickerhauser, M.V. Lectures on Wavelet Packet Algorithms, Technical Report, Washington University, Department of Mathematics, 1992.

## Purpose Build wavelet from pattern

```
Syntax [PSI, XVAL,NC] = pat2cwav(YPAT,METHOD, POLDEGREE,REGULARITY)
```


## Description

[PSI,XVAL,NC] = pat2cwav(YPAT,METHOD,POLDEGREE,REGULARITY) computes an admissible wavelet for CWT (given by XVAL and PSI) adapted to the pattern defined by the vector YPAT, and of norm equal to 1 .

The underlying x -values pattern is set to
xpat $=$ linspace ( 0,1, length(YPAT) $)$
The constant NC is such that NC*PSI approximates YPAT on the interval [ 0,1 ] by least squares fitting using

- a polynomial of degree POLDEGREE when METHOD is equal to 'polynomial'
- a projection on the space of functions orthogonal to constants when METHOD is equal to 'orthconst'

The REGULARITY parameter defines the boundary constraints at the points 0 and 1 . Allowable values are 'continuous', 'differentiable', and 'none'.

When METHOD is equal to 'polynomial'

- if REGULARITY is equal to 'continuous', POLDEGREE must be greater than or equal to 3.
- if REGULARITY is equal to 'differentiable', POLDEGREE must be greater than or equal to 5 .

Examples The principle for designing a new wavelet for CWT is to approximate a given pattern using least squares optimization under constraints leading to an admissible wavelet well suited for the pattern detection using the continuous wavelet transform (see Misiti et al.).
load ptpssin1;

```
plot(X,Y), title('Original Pattern')
```


[psi,xval,nc] = pat2cwav(Y, 'polynomial',6, 'continuous') ; plot(X,Y,'-',xval,nc*psi,'--'), title('Original Pattern and Adapted Wavelet (dashed line)')


You can check that psi satisfies the definition of a wavelet by noting that it integrates to zero and that its $L_{2}$ norm is equal to 1 .

```
dx = xval(2)-xval(1);
Mu = sum(psi*dx)
L2norm = sum(abs(psi).^2*dx)
```

References Misiti, M., Y. Misiti, G. Oppenheim, J.-M. Poggi (2003), "Les ondelettes et leurs applications," Hermes.

## Purpose Plot tree GUI

Syntax
plot (T)
plot(T,FIG)
Description
plot is a graphical tree-management utility.
plot ( $T$ ) plots the tree $T$.
The figure that contains the tree is a GUI tool. It lets you change the Node Label to Depth_Position or Index, and Node Action to Split-Merge or Visualize.

The default values are Depth_Position and Visualize.
You can click the nodes to execute the current Node Action.
plot ( $T$, FIG) plots the tree $T$ in the figure whose handle is FIG. This figure was already used to plot a tree, for example using the command

```
FIG = plot(T)
```

After some split or merge actions, you can get the new tree using its parent figure handle. The following syntax lets you perform this functionality:

NEWT $=\operatorname{plot}\left(T,{ }^{\prime}\right.$ read', $\left.F I G\right)$
In fact, the first argument is dummy. The most general syntax is
NEWT = plot(DUMMY,'read',FIG)
where DUMMY is any object parented by an NTREE object. More generally, DUMMY can be any object constructor name returning an NTREE parented object. For example:

```
NEWT = plot(ntree,'read',FIG)
NEWT = plot(dtree,'read',FIG)
NEWT = plot(wptree,'read',FIG)
```

Examples $\quad \begin{aligned} & \text { \% Create a wavelet packets tree (1-D) } \\ & \quad \begin{array}{l}\text { load noisbloc } \\ \\ \\ t=\text { noisbloc } ; \\ \\ \\ \\ \\ \\ \\ \\ \text { plot } \operatorname{Plot}(t)\end{array}\end{aligned}$

\% Change Node Label from Depth_Position to Index.

\% Click the node (3). You get the following figure.

\% Change Node Action from Visualize to Split_Merge.

\% Merge the node (2) and split the node (3).
\% Change Node Action from Split_Merge to Visualize.
\% Click the node (7). You obtain the following figure,
\% which represents the wavelet decomposition at level 3.

\% Create a wavelet packets tree (2-D)
load woman2
t = wpdec2(X,1,'sym4');
\% Plot tree t.
plot(t)
\% Change Node Label from Depth_Position to Index.
\% Click the node (1). You get the following figure.


## Purpose Quadrature mirror filter

Syntax $\quad$| $Y$ | $=\operatorname{qmf}(X, P)$ |
| ---: | :--- |
| $Y$ | $=\operatorname{qmf}(X)$ |
| $Y$ | $=\operatorname{qmf}(X, 0)$ |

## Description

## Examples

```
% Load scaling filter associated with an orthogonal wavelet.
load db10;
subplot(321); stem(db10); title('db10 low-pass filter');
% Compute the quadrature mirror filter.
qmfdb10 = qmf(db10);
subplot(322); stem(qmfdb10); title('QMF db10 filter');
% Check for frequency condition (necessary for orthogonality):
```

```
% abs(fft(filter))^2 + abs(fft(qmf(filter))^2 = 1 at each
% frequency.
m = fft(db10);
mt = fft(qmfdb10);
freq = [1:length(db10)]/length(db10);
subplot(323); plot(freq,abs(m));
title('Transfer modulus of db10')
subplot(324); plot(freq,abs(mt));
title('Transfer modulus of QMF db10')
subplot(325); plot(freq,abs(m).^2 + abs(mt).^2);
title('Check QMF condition for db10 and QMF db10')
xlabel(' abs(fft(db10))^2 + abs(fft(qmf(db10))^2 = 1')
% Editing some graphical properties,
% the following figure is generated.
```





```
Check QMF condition for db 10 and QMF db10
```



```
\(a b s(f f t(d b 10))^{\wedge} 2+a b s\left(f f t(q m f(d b 10))^{\wedge} 2=1\right.\)
\% Check for orthonormality.
df = [db10;qmfdb10]*sqrt(2);
\(i d=d f * d f^{\prime}\)
```

```
id =
 1.0000 0.0000
 0.0000 1.0000
```

References Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge Press.

## Purpose

Reverse biorthogonal spline wavelet filters

## Syntax

Description

| $\mathrm{Nr}=1$ | $\mathrm{Nd}=1,3$ or 5 |
| :--- | :--- |
| $\mathrm{Nr}=2$ | $\mathrm{Nd}=2,4,6$ or 8 |
| $\mathrm{Nr}=3$ | $\mathrm{Nd}=1,3,5,7$ or 9 |
| $\mathrm{Nr}=4$ | $\mathrm{Nd}=4$ |
| $\mathrm{Nr}=5$ | $\mathrm{Nd}=5$ |
| $\mathrm{Nr}=6$ | $\mathrm{Nd}=8$ |

The output arguments are filters.

- RF is the reconstruction filter.
- DF is the decomposition filter.


## Examples

```
% Set reverse biorthogonal spline wavelet name.
 wname = 'rbio2.2';
% Compute the two corresponding scaling filters,
% rf is the reconstruction scaling filter and
% df is the decomposition scaling filter.
[rf,df] = rbiowavf(wname)
rf =
 -0.1250 0.2500 0.7500 0.2500 -0.1250
df =
```

$$
\begin{array}{lll}
0.2500 & 0.5000 & 0.2500
\end{array}
$$

## See Also <br> biorfilt | waveinfo

## Purpose Read values of WPTREE

## Syntax <br> VARARGOUT $=\operatorname{read}(T$, VARARGIN)

Description
VARARGOUT $=\operatorname{read}(T$, VARARGIN $)$ is the most general syntax to read one or more property values from the fields of a WPTREE object .

The different ways to call the read function are

```
PropValue = read(T,'PropName') or
PropValue = read(T,'PropName','PropParam')
```

or any combination of the previous syntaxes:

```
[PropValue1,PropValue2,] =
read(T,'PropName1','PropParam1','PropName2','PropParam2',)
```

where 'PropParam' is optional.
The valid choices for 'PropName' and 'PropParam' are listed in this table.

| PropName | PropParam |
| :--- | :--- |
| 'ent ', 'ento' or 'sizes' <br> (see wptree) | Without 'PropParam' or with <br> 'PropParam' = Vector of node indices, <br> PropValue contains the entropy (or <br> optimal entropy, or size) of the tree <br> nodes in ascending node index order. |
| 'cfs' | With 'PropParam' $=$ One terminal node <br> index. cfs = read(T, 'cfs' , NODE) is <br> equivalent to cfs $=$ read(T,'data',NODE) <br> and returns the coefficients of the <br> terminal node NODE. |


| PropName | PropParam |
| :--- | :--- |
| 'entName', 'entPar', <br> 'wavName' (see wptree) or <br> 'allcfs' | Without 'PropParam' <br> read(T, 'allcfs') is equivalent to <br> cfs = read(T, 'data'). PropValue <br> contains the desired information in <br> ascending node index order of the tree <br> nodes. |
| 'wfilters' (see wfilters) | Without 'PropParam' or with <br> 'PropParam' = 'd', 'r', 'l', ' h '. |
| 'data' | Without 'PropParam' or with <br> 'PropParam' $=$ One terminal node <br> index or 'PropParam' $=$ Column <br> vector of terminal node indices.In this <br> last case, PropValue is a cell array. <br> Without 'PropParam', PropValue <br> contains the coefficients of the tree <br> nodes in ascending node index order. |

```
Examples % Create a wavelet packet tree.
x = rand(1,512);
t = wpdec(x,3,'db3');
t = wpjoin(t,[4;5]);
plot(t);
% Click the node (3,0), (see the plot function).
1% Read values.
sAll = read(t,'sizes');
sNod = read(t,'sizes',[0,4,5]);
eAll = read(t,'ent');
eNod = read(t,'ent',[0,4,5]);
dAll = read(t,'data');
dNod = read(t,'data',[4;5]);
[lo_D,hi_D,lo_R,hi_R] = read(t,'wfilters');
```

```
[lo_D,lo_R,hi_D,hi_R] = read(t,'wfilters','l','wfilters','h');
[ent,ento,cfs4,cfs5] = read(t,'ent','ento','cfs',4,'cfs',5);
```



See Also disp | get \| set \| wptree | write

Purpose Read wavelet packet decomposition tree from figure

## Syntax <br> T = readtree(F)

Description

Examples
$\mathrm{T}=$ readtree $(F)$ reads the wavelet packet decomposition tree from the figure whose handle is $F$.

```
% Create a wavelet packet tree.
x = sin(8*pi*[0:0.005:1]);
t = wpdec(x,3,'db2');
% Display the generated tree in a Wavelet Packet 1-D GUI window.
fig = drawtree(t);
```



```
%-------------------------------------
```

\% Use the GUI to split or merge Nodes.


$\mathrm{t}=$ readtree(fig);
plot(t)
\% Click the node $(3,0)$, (see the plot function).



See Also
drawtree

## Purpose Syntax Description

Scale to frequency

```
F = scal2frq(A,'wname',DELTA)
scal2frq(A,'wname')
scal2frq(A,'wname',1)
```

F = scal2frq(A,'wname', DELTA) returns the pseudo-frequencies corresponding to the scales given by A, the wavelet function 'wname' (see wavefun for more information) and the sampling period DELTA.
scal2frq(A, 'wname') is equivalent to scal2frq(A,'wname', 1 ).
One of the most frequently asked questions is "How does one map a scale, for a given wavelet and a sampling period, to a kind of frequency?"

The answer can only be given in a broad sense and it's better to speak about the pseudo-frequency corresponding to a scale.

A way to do it is to compute the center frequency, $F_{c}$, of the wavelet and to use the following relationship.

$$
F_{a}=\frac{F_{c}}{a \cdot \Delta}
$$

where

- $a$ is a scale.
- $\Delta$ is the sampling period.
- $F_{c}$ is the center frequency of a wavelet in Hz .
- $F_{a}$ is the pseudo-frequency corresponding to the scale $a$, in Hz .

The idea is to associate with a given wavelet a purely periodic signal of frequency $F_{c}$. The frequency maximizing the fft of the wavelet modulus is $F_{c}$. The function centfrq can be used to compute the center frequency and it allows the plotting of the wavelet with the associated approximation based on the center frequency. The following figure (Center Frequencies for Real and Complex Wavelets on page 1-317) shows some examples generated using the centfrq function.

- Four real wavelets: Daubechies wavelets of order 2 and 7, coiflet of order 1, and the Gaussian derivative of order 4.
- Two complex wavelets: the complex Gaussian derivative of order 6 and a Shannon complex wavelet.



## Center Frequencies for Real and Complex Wavelets

As you can see, the center frequency based approximation captures the main wavelet oscillations. So the center frequency is a convenient and simple characterization of the leading dominant frequency of the wavelet.

If we accept to associate the frequency $F_{c}$ to the wavelet function then, when the wavelet is dilated by a factor $a$, this center frequency becomes $F_{c} / a$. Lastly, if the underlying sampling period is $\Delta$, it is natural to associate to the scale $a$ the frequency

$$
F_{a}=\frac{F_{c}}{a \cdot \Delta}
$$

The function scal2frq computes this correspondence.
To illustrate the behavior of this procedure, let us consider the following simple test. We generate sine functions of sensible frequencies $F_{0}$. For each function, we shall try to detect this frequency by a wavelet decomposition followed by a translation of scale to frequency. More precisely, after a discrete wavelet decomposition, we identify the scale $a^{*}$ corresponding to the maximum value of the energy of the coefficients. The translated frequency $F^{*}$ is then given by

```
scal2frq(a_star,'wname',sampling_period)
```

The $F^{*}$ values are close to the chosen $F_{0}$. The plots at the end of example 2 presents the periods instead of frequencies. If we change slightly the $F_{0}$ values, the results remain satisfactory.

## Examples

## Example 1

```
% Set sampling period and wavelet name.
delta = 0.1; wname = 'coif3';
% Define scales.
amax = 7; a = 2.^[1:amax];
% Compute associated pseudo-frequencies.
```

```
f = scal2frq(a,wname,delta);
% Compute associated pseudo-periods.
per = 1./f;
% Display information.
disp(' Scale Frequency Period')
disp([a' f' per'])
 Scale Frequency Period
 2.0000 3.5294 0.2833
 4.0000 1.7647 0.5667
 8.0000 0.8824 1.1333
 16.0000 0.4412 2.2667
 32.0000 0.2206 4.5333
 64.0000 0.1103 9.0667
 128.0000 0.0551 18.1333
```


## Example 2

```
\% Set sampling period and wavelet name. delta \(=0.1 ;\) wname \(=\) 'coif3';
\% Define scales.
amax = 7;
a \(=2 . \wedge[1: \operatorname{amax}] ;\)
\% Compute associated pseudo-frequencies. \(f=s c a l 2 f r q(a, w n a m e, d e l t a) ;\)
\% Compute associated pseudo-periods. per = 1./f;
\% Plot pseudo-periods versus scales. subplot(211), plot(a,per)
```

```
title(['Wavelet: ',wname, ', Sampling period: ',num2str(delta)])
xlabel('Scale')
ylabel('Computed pseudo-period')
% For each scale 2^i:
% - generate a sine function of period per(i);
% - perform a wavelet decomposition;
% - identify the highest energy level;
% - compute the detected pseudo-period.
for i = 1:amax
 % Generate sine function of period
 % per(i) at sampling period delta.
 t = 0:delta:100;
 x = sin((t.*2*pi)/per(i));
 % Decompose x at level 9.
 [c,l] = wavedec(x,9,wname);
 % Estimate standard deviation of detail coefficients.
 stdc = wnoisest(c,l,[1:amax]);
 % Compute identified period.
 [y,jmax] = max(stdc);
 idper(i) = per(jmax);
end
% Compare the detected and computed pseudo-periods.
subplot(212), plot(per,idper,'o',per,per)
title('Detected vs computed pseudo-period')
xlabel('Computed pseudo-period')
ylabel('Detected pseudo-period')
```



## Example 3

This example demonstrates that, starting from the periodic function $x(t)=\cos (5 t)$, the scal2frq function translates the scale corresponding to the maximum value of the CWT coefficients to a pseudo-frequency (0.795), which is near to the true frequency (5/ (2*pi) $=\sim 0.796$ ).
\% Set wavelet name, interval and number of samples.
wname = 'db10';
$A=-64 ; B=64 ; P=224 ;$
\% Compute the sampling period and the sampled function,
\% and the true frequency.
delta $=(B-A) /(P-1)$;
$\mathrm{t}=$ linspace $(\mathrm{A}, \mathrm{B}, \mathrm{P})$;
omega = 5; $\mathrm{x}=\cos (o m e g a * t) ;$
freq = omega/(2*pi);

```
% Set scales and use scal2frq to compute the array
% of pseudo-frequencies.
scales = [0.25:0.25:3.75];
TAB_PF = scal2frq(scales,wname,delta);
% Compute the nearest pseudo-frequency
% and the corresponding scale.
[dummy,ind] = min(abs(TAB_PF-freq));
freq_APP = TAB_PF(ind);
scale_APP = scales(ind);
% Continuous analysis and plot.
str1 = ['224 samples of x = cos(5t) on [-64,64] - '...
 'True frequency = 5/(2*pi) =~ ' num2str(freq,3)];
str2 = ['Array of pseudo-frequencies and scales: '];
str3 = [num2str([TAB_PF',scales'],3)];
str4 = ['Pseudo-frequency = ' num2str(freq_APP,3)];
str5 = ['Corresponding scale = ' num2str(scale_APP,3)];
figure; cwt(x,scales,wname,'plot'); ax = gca; colorbar
axTITL = get(ax,'title');
axXLAB = get(ax,'xlabel');
set(axTITL,'String',str1)
set(axXLAB,'String',[str4,' - 'str5])
clc ; disp(char(' ',str1,' ',str2,str3,' ',str4,str5))
224 samples of x = cos(5t) on [-64,64]
True frequency = 5/(2*pi) =~ 0.796
Array of pseudo-frequencies and scales:
 4.77 0.25
 2.38 0.5
 1.59 0.75
 1.19 1
0.954 1.25
0.795 1.5
0.681 1.75
0.596 2
```

| 0.341 | 3.5 |
| :--- | ---: |
| 0.318 | 3.75 |

Pseudo-frequency $=0.795$
Corresponding scale = 1.5


## Example 4

This example demonstrates that, starting from the periodic function $x(t)=5^{*} \sin (5 t)+3^{*} \sin (2 t)+2^{*} \sin (t)$, the scal2frq function translates the scales corresponding to the maximum values of the CWT coefficients to pseudo-frequencies ([0.796 0.3180 .159$]$ ), which are near to the true frequencies ([5 2 1] / (2*pi) =~ [0.796 0.318 0.159]).
\% Set wavelet name,interval and number of samples.
wname = 'morl';
$\mathrm{A}=0 ; \mathrm{B}=64 ; \mathrm{P}=500$;

```
% Compute the sampling period and the sampled function,
% and the true frequencies.
t = linspace(A,B,P);
delta = (B-A)/(P-1);
tab_OMEGA = [5,2,1];
tab_FREQ = tab_OMEGA/(2*pi);
tab_COEFS = [5,3,2];
x = zeros(1,P);
for k = 1:3;
 x = x+tab_COEFS(k)*sin(tab_OMEGA(k)*t);
end
% Set scales and use scal2frq to compute the array
% of pseudo-frequencies.
scales = [1:1:60];
tab_PF = scal2frq(scales,wname,delta);
% Compute the nearest pseudo-frequencies
% and the corresponding scales.
for k=1:3
 [dummy,ind] = min(abs(tab_PF-tab_FREQ(k)));
 PF_app(k) = tab_PF(ind);
 SC_app(k) = scales(ind);
end
% Continuous analysis and plot.
str1 = char(...
 '500 samples of x = 5*sin(5t)+3*sin(2t)+2*sin(t) on [0,64]',...
 ['True frequencies (in Hz): [5 2 1]/(2*pi) =~ [' ...
 num2str(tab_FREQ,3) ']'] ...
);
str2 = ['Array of pseudo-frequencies and scales: '];
str3 = [num2str([tab_PF',scales'],3)];
str4 = ['Pseudo-frequencies = ' num2str(PF_app,3)];
str5 = ['Corresponding scales = ' num2str(SC_app,3)];
figure; cwt(x,scales,wname,'plot'); ax = gca; colorbar
```

```
axTITL = get(ax,'title');
axXLAB = get(ax,'xlabel');
set(axTITL,'String',str1)
set(axXLAB,'String',char(str4, str5))
clc; disp(char(' ',str1,' ',str2,str3,' ',str4,str5))
500 samples of x = 5*sin(5t)+3*sin(2t)+2*sin(t) on [0,64]
True frequencies (in Hz): [5 2 1]/(2*pi) =~ [0.796 0.318 0.159]
Array of pseudo-frequencies and scales:
 6.33 1
 3.17 2
 2.11 3
 1.58 4
 1.27 5
 1.06 6
0.905 7
0.792 8
0.704 9
0.633 10
0.122 52
 0.12 53
0.117 54
0.115 55
0.113 56
0.111 57
0.109 58
0.107 59
0.106 60
Pseudo-frequencies = 0.792 0.317 0.158
Corresponding scales = 8 20 40
```



## References

See Also

Abry, P. (1997), Ondelettes et turbulence. Multirésolutions, algorithmes de décomposition, invariance d'échelles, Diderot Editeur, Paris.
centfrq

## Purpose

WPTREE field contents

## Syntax

```
T =
set(T,'FieldName1',FieldValue1,'FieldName2',FieldValue2,
 ...)
```


## Description

## $\mathrm{T}=$

set(T, 'FieldName1',FieldValue1, 'FieldName2', FieldValue2, $\ldots$..) sets the content of the specified fields for the WPTREE object T.
For the fields that are objects or structures, you can set the subfield contents, giving the name of these subfields as 'FieldName' values. The valid choices for 'FieldName' are

```
'dtree' DTREE parent object
'wavInfo' Structure (wavelet information)
```

The fields of the wavelet information structure, 'wavinfo', are also valid for 'FieldName':

| 'wavName' | Wavelet name |
| :--- | :--- |
| 'Lo_D' | Low Decomposition filter |
| 'Hi_D' | High Decomposition filter |
| 'Lo_R' | Low Reconstruction filter |
| 'Hi_R' | High Reconstruction filter |
|  |  |
| 'entInfo' | Structure (entropy information) |
| The fields of the entropy information structure, 'entInfo', are also <br> valid for 'FieldName': |  |


| 'entName' | Entropy name |
| :--- | :--- |
| 'entPar' | Entropy parameter |

Or fields of DTREE parent object:

| 'ntree' | NTREE parent object |
| :--- | :--- |
| 'allNI' | All nodes information |
| 'terNI ' | Terminal nodes information |

Or fields of NTREE parent object:

| 'wtbo' | WTBO parent object |
| :--- | :--- |
| 'order' | Order of the tree |
| 'depth' | Depth of the tree |
| 'spsch' | Split scheme for nodes |
| 'tn' | Array of terminal nodes of the tree |

Or fields of WTBO parent object:

| 'wtboInfo' | Object information |
| :--- | :--- |
| 'ud' | Userdata field |

Caution The set function should only be used to set the field 'ud'.

See Also disp | get | read | write

## Purpose

Complex Shannon wavelet

## Syntax

Description
[PSI, X] = shanwavf(LB, UB, N, FB, FC)
$[\mathrm{PSI}, \mathrm{X}]=$ shanwavf( $\mathrm{LB}, \mathrm{UB}, \mathrm{N}, \mathrm{FB}, \mathrm{FC}$ ) returns values of the complex Shannon wavelet defined by a bandwidth parameter FB, a wavelet center frequency FC, and the expression

```
PSI(X) = (FB^0.5)*(sinc(FB*X).*exp(2*i*pi*FC*X))
```

on an $N$ point regular grid in the interval [LB, UB].
FB and FC must be such that FC > 0 and FB > 0 .
Output arguments are the wavelet function PSI computed on the grid X .

## Examples

\% Set bandwidth and center frequency parameters. $\mathrm{fb}=1$; $\mathrm{fc}=1.5$;
\% Set effective support and grid parameters. lb $=-20$; ub $=20 ; n=1000$;
\% Compute complex Shannon wavelet shan1.5-1. [psi, x] = shanwavf(lb,ub, n,fb,fc);
\% Plot complex Shannon wavelet.
subplot(211)
plot(x,real(psi)),
title('Complex Shannon wavelet shan1.5-1')
xlabel('Real part'), grid
subplot(212)
plot(x,imag(psi))
xlabel('Imaginary part'), grid


References Teolis, A. (1998), Computational signal processing with wavelets, Birkäuser, p. 62.

See Also waveinfo

## Purpose <br> Syntax <br> Description

Discrete stationary wavelet transform 1-D

SWC = swt(X,N,'wname')
SWC = swt(X,N,Lo_D,Hi_D)
swt performs a multilevel 1-D stationary wavelet decomposition using either a specific orthogonal wavelet ('wname', see wfilters for more information) or specific orthogonal wavelet decomposition filters.

SWC = swt(X,N,'wname') computes the stationary wavelet decomposition of the signal $X$ at level $N$, using 'wname'.
$N$ must be a strictly positive integer (see wmaxlev for more information) and length ( X ) must be a multiple of $2^{\mathrm{N}}$.

SWC $=\operatorname{swt}\left(X, N, L o \_D, H i \_D\right)$ computes the stationary wavelet decomposition as above, given these filters as input:

- Lo_D is the decomposition low-pass filter.
- Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length.
The output matrix SWC contains the vectors of coefficients stored row-wise:

For $1 \leq i \leq N$, the output matrix SWC(i,:) contains the detail coefficients of level i and $\operatorname{SWC}(N+1,:)$ contains the approximation coefficients of level N .
[SWA, SWD] = swt( ) computes approximations, SWA, and details, SWD, stationary wavelet coefficients.

The vectors of coefficients are stored row-wise:
For $1 \leq i \leq N$, the output matrix SWA(i,:) contains the approximation coefficients of level $i$ and the output matrix $\operatorname{SWD}(i,:)$ contains the detail coefficients of level i.

```
Note swt is defined using dwt with periodic extension.
```

```
Examples %Load original 1D signal.
load noisbloc; s = noisbloc;
% Perform SWT decomposition at level 3 of s using db1.
[swa,swd] = swt(s,3,'db1');
% Plots of SWT coefficients of approximations and details
% at levels 3 to 1.
% Using some plotting commands,
% the following figure is generated.
```



## Algorithms

Given a signal $s$ of length $N$, the first step of the SWT produces, starting from $s$, two sets of coefficients: approximation coefficients $c A_{1}$ and detail coefficients $c D_{1}$. These vectors are obtained by convolving $s$ with the low-pass filter Lo_D for approximation, and with the high-pass filter Hi_D for detail.
More precisely, the first step is

where $\square$ Convolve with filter X

Note $c A_{1}$ and $c D_{1}$ are of length $N$ instead of $N / 2$ as in the DWT case.

The next step splits the approximation coefficients $c A_{1}$ in two parts using the same scheme, but with modified filters obtained by upsampling the filters used for the previous step and replacing $s$ by $c A_{1}$. Then, the SWT produces $c A_{2}$ and $c D_{2}$. More generally,

## One-Dimensional SWT

Decomposition step


Initialization

$$
c A_{0}=s
$$



Initialization $F_{0}=L o_{-} D \quad$ where


Initialization $G_{0}=H i \_D$

[^7]Purpose
Discrete stationary wavelet transform 2-D
Syntax

```
SWC = swt2(X,N,'wname')
[A,H,V,D] = swt2(X,N,'wname')
SWC = swt2(X,N,Lo_D,Hi_D)
[A,H,V,D] = swt2(X,N,Lo_D,Hi_D)
```


## Description

swt2 performs a multilevel 2-D stationary wavelet decomposition using either a specific orthogonal wavelet ('wname'- see wfilters for more information) or specific orthogonal wavelet decomposition filters.

SWC = swt2(X,N,'wname') or [A,H,V,D] = swt2(X,N,'wname') compute the stationary wavelet decomposition of the matrix X at level N , using 'wname'.

N must be a strictly positive integer (see wmaxlev for more information), and $2^{\mathrm{N}}$ must divide $\operatorname{size}(\mathrm{X}, 1)$ and $\operatorname{size}(\mathrm{X}, 2)$.
Outputs [A,H,V,D] are 3-D arrays, which contain the coefficients:

- For $1 \leq i \leq N$, the output matrix $A(:,:, i)$ contains the coefficients of approximation of level i.
- The output matrices $\mathrm{H}(:,:, \mathrm{i}), \mathrm{V}(:,:, \mathrm{i})$ and $\mathrm{D}(:,:, \mathrm{i})$ contain the coefficients of details of level i (horizontal, vertical, and diagonal):
SWC = [H(:,:,1:N) ; V(:,:,1:N) ; D(:,:,1:N) ; A(:,:,N)]

SWC $=\operatorname{swt2}\left(X, N, L o \_D, H i \_D\right)$ or $[A, H, V, D]=\operatorname{swt2(X,N,Lo\_ D,Hi\_ D),~}$ computes the stationary wavelet decomposition as in the previous syntax, given these filters as input:

- Lo_D is the decomposition low-pass filter.
- Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length.

Note swt2 is defined using dwt with periodic extension.

```
Tips
Examples % Load original image.
load nbarb1;
% Image coding.
nbcol = size(map,1);
cod_X = wcodemat(X,nbcol);
% Visualize the original image.
subplot(221)
image(cod_X)
title('Original image');
colormap(map)
% Perform SWT decomposition
% of X at level 3 using sym4.
[ca,chd,cvd,cdd] = swt2(X,3,'sym4');
% Visualize the decomposition.
for k = 1:3
 % Images coding for level k.
 cod_ca = wcodemat(ca(:,:,k),nbcol);
 cod_chd = wcodemat(chd(:,:,k),nbcol);
 cod_cvd = wcodemat(cvd(:,:,k),nbcol);
 cod_cdd = wcodemat(cdd(:,:,k),nbcol);
 decl = [cod_ca,cod_chd;cod_cvd,cod_cdd];
```

```
 % Visualize the coefficients of the decomposition
 % at level k.
 subplot(2,2,k+1)
 image(decl)
 title(['SWT dec.: approx. ', ...
 and det. coefs (lev. ',num2str(k),')']);
 colormap(map)
end
% Editing some graphical properties,
% the following figure is generated.
```



SWT dec.: approx. and det. coets (lev. 2)


SWT dec.: approx. and det. coets (lev. 1)


SWT dec.: approx. and det. coets (lev. 3)


Algorithms
For images, an algorithm similar to the one-dimensional case is possible for two-dimensional wavelets and scaling functions obtained from one-dimensional ones by tensor product.
This kind of two-dimensional SWT leads to a decomposition of approximation coefficients at levelj in four components: the approximation at level $j+1$, and the details in three orientations (horizontal, vertical, and diagonal).

The following chart describes the basic decomposition step for images:

Two-Dimensional SWT


[^8]
## Purpose <br> Symlet wavelet filter computation

$$
\begin{array}{ll}
\text { Syntax } & W=\operatorname{SYmaUX}(N, \operatorname{sumw}) \\
& W=\operatorname{SYMAUX}(N) \\
& W=\operatorname{SYMAUX}(N, 1) \\
& W=\operatorname{SYMAUX}(N, 0) \\
& W=\operatorname{SYMAUX}(N, 1)
\end{array}
$$

## Description

Examples

Symlets are the Äúleast asymmetricÄù Daubechies wavelets.
W = SYMAUX( N, SUMW) is the order N Symlet scaling filter such that SUM (W) = SUMW. Possible values for N are $1,2,3, \ldots$

Note Instability may occur when N is too large.

```
W = SYMAUX(N) is equivalent to W = SYMAUX(N,1).
W = SYMAUX(N,0) is equivalent to W = SYMAUX (N,1).
```

\% Generate wdb4 the order 4 Daubechies scaling filter.
wdb4 = dbaux(4)
wdb4 =
Columns 1 through 7
$\begin{array}{lllllll}0.1629 & 0.5055 & 0.4461 & -0.0198 & -0.1323 & 0.0218 & 0.0233\end{array}$
Column 8
$-0.0075$
\% wdb4 is a solution of the equation: $\mathrm{P}=\operatorname{conv}(w r e v(w), w) * 2$,
\% where P is the "Lagrange trous" filter for $\mathrm{N}=4$.

```
% wdb4 is a minimum phase solution of the previous equation,
% based on the roots of P (see dbaux).
P = conv(wrev(wdb4),wdb4)*2;
% Generate wsym4 the order 4 symlet scaling filter.
% The Symlets are the "least asymmetric" Daubechies'
% wavelets obtained from another choice between the roots of P.
wsym4 = symaux(4)
wsym4 =
 Columns 1 through 7
 0.0228 -0.0089 -0.0702 0.2106 0.5683 0.3519 - 0.021(
 Column 8
 -0.0536
 % Compute conv(wrev(wsym4),wsym4) * 2 and check that wsym4
% is another solution of the equation P = conv(wrev(w),w)*2.
Psym = conv(wrev(wsym4),wsym4)*2;
err = norm(P-Psym)
err =
 7.4988e-016
symwavf | wfilters
```

See Also
Purpose Symlet wavelet filter

## Syntax $\quad F=\operatorname{symwavf}(W)$

Description $\quad F=\operatorname{symwavf}(W)$ returns the scaling filter associated with the symlet wavelet specified by the string $W$ where $W=$ 'symN'. Possible values for $N$ are $2,3, \ldots, 45$.

```
Examples % Compute the scaling filter corresponding to wavelet sym4.
w = symwavf('sym4')
w =
 Columns 1 through 7
 0.0228-0.0089 -0.0702 0.2106 0.5683 0.3519-0.0210
 Column }
 -0.0536
```

See Also symaux | waveinfo

## Purpose

## Syntax

Description

Threshold selection for de-noising

THR = thselect(X,TPTR)
thselect is a one-dimensional de-noising oriented function.
THR $=$ thselect ( X, TPTR ) returns threshold X -adapted value using selection rule defined by string TPTR.

Available selection rules are

- TPTR = 'rigrsure', adaptive threshold selection using principle of Stein's Unbiased Risk Estimate.
- TPTR = 'heursure', heuristic variant of the first option.
- $\operatorname{TPTR}=$ 'sqtwolog', threshold is sqrt(2*log(length $(X))$ ).
- TPTR = 'minimaxi', minimax thresholding.

Threshold selection rules are based on the underlying model $y=f(t)+$ $e$ where $e$ is a white noise $N(0,1)$. Dealing with unscaled or nonwhite noise can be handled using rescaling output threshold THR (see SCAL parameter in wden for more information).

Available options are

- tptr = 'rigrsure' uses for the soft threshold estimator, a threshold selection rule based on SteinÄôs Unbiased Estimate of Risk (quadratic loss function). One gets an estimate of the risk for a particular threshold value $(t)$. Minimizing the risks in $(t)$ gives a selection of the threshold value.
- tptr = 'sqtwolog' uses a fixed-form threshold yielding minimax performance multiplied by a small factor proportional to $\log ($ length $(X))$.
- tptr = 'heursure' is a mixture of the two previous options. As a result, if the signal to noise ratio is very small, the SURE estimate is very noisy. If such a situation is detected, the fixed form threshold is used.
- tptr = 'minimaxi' uses a fixed threshold chosen to yield minimax performance for mean square error against an ideal procedure. The minimax principle is used in statistics in order to design estimators. Since the de-noised signal can be assimilated to the estimator of the unknown regression function, the minimax estimator is the one that realizes the minimum of the maximum mean square error obtained for the worst function in a given set.

Examples

References
\% The current extension mode is zero-padding (see dwtmode). \% Generate Gaussian white noise. $x=\operatorname{randn}(1,1000)$;
\% Find threshold for each selection rule.
\% Adaptive threshold using SURE.
thr = thselect(x,'rigrsure')
\% Fixed form threshold.
thr = thselect( x, 'sqtwolog')
\% Heuristic variant of the first option.
thr = thselect(x,'heursure')
\% Minimax threshold. thr = thselect(x,'minimaxi')

Donoho, D.L. (1993), "Progress in wavelet analysis and WVD: a ten minute tour," in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, pp. 109-128. Frontières Ed.
Donoho, D.L., I.M. Johnstone (1994), "Ideal spatial adaptation by wavelet shrinkage," Biometrika, vol 81, pp. 425-455.

Donoho, D.L. (1995), "De-noising by soft-thresholding," IEEE Trans. on Inf. Theory, 41, 3, pp. 613-627.

## See Also wden

## Purpose Determine terminal nodes

## Syntax

$\mathrm{N}=\operatorname{tnodes}(T)$
$\mathrm{N}=$ tnodes( $T$, 'deppos')
$[\mathrm{N}, \mathrm{K}]=\operatorname{tnodes}(T)$
[ $\mathrm{N}, \mathrm{K}$ ] = tnodes(T,'deppos'), $\mathrm{M}=\mathrm{N}(\mathrm{K})$

Examples

```
% Create initial tree.
ord = 2;
t = ntree(ord,3); % Binary tree of depth 3.
t = nodejoin(t,5);
t = nodejoin(t,4);
plot(t)
```


\% Change Node Label from Depth_Position to Index \% (see the plot function).

\% List terminal nodes (index). tnodes(t)
ans =
4
5
7
8
13
14
\% List terminal nodes (Depth_Position). tnodes(t, 'deppos')

| ans $=$ |  |
| ---: | ---: |
| 2 | 1 |
| 2 | 2 |
| 3 | 0 |
| 3 | 1 |
| 3 | 6 |
| 3 | 7 |

See Also
leaves | noleaves | wtreemgr

## treedpth

Purpose Tree depth

## Syntax <br> D = treedpth $(T)$

Description treedpth is a tree-management utility. $\mathrm{D}=\operatorname{treedpth}(T)$ returns the depth D of the tree $T$.

Examples \%Create binary tree (tree of order 2) of depth 3. t = ntree(2,3);
\% Plot tree t. plot(t)


```
% Tree depth.
treedpth(t)
ans =
 3
```

See Also wtreemgr

## Purpose Tree order

## Syntax $\quad$ ORD $=\operatorname{treeord}(T)$

Description treeord is a tree-management utility.
ORD $=$ treeord $(T)$ returns the order ORD of the tree $T$.
Examples \%Create binary tree (tree of order 2) of depth 3. t = ntree (2,3);
\% Plot tree $t$.
plot(t)

\% Tree order.
treeord(t)
ans =
2
See Also wtreemgr

## upcoef

## Purpose <br> Direct reconstruction from 1-D wavelet coefficients

Syntax

```
Y = upcoef(0,X,'wname',N)
Y = upcoef(0,X,'wname',N,L)
Y = upcoef(0,X,Lo_R,Hi_R,N)
Y = upcoef(0,X,Lo_R,Hi_R,N,L)
Y = upcoef(0,X,'wname'')
Y = upcoef(0,X,'wname'',1)
Y = upcoef(0,X,Lo_R,Hi_R)
Y = upcoef(0,X,Lo_R,Hi_R,1)
```


## Description

upcoef is a one-dimensional wavelet analysis function.
$Y=\operatorname{upcoef}(0, X, ' w n a m e ', N)$ computes the $N$-step reconstructed coefficients of vector X .
'wname' is a string containing the wavelet name. See wfilters for more information.
$N$ must be a strictly positive integer.
If $0=$ ' a ', approximation coefficients are reconstructed.
If $0=$ 'd', detail coefficients are reconstructed.
$Y=u p c o e f(0, X, '$ wname' $, N, L$ ) computes the $N$-step reconstructed coefficients of vector $X$ and takes the length-L central portion of the result.

Instead of giving the wavelet name, you can give the filters.
For $Y=\operatorname{upcoef}\left(0, X, L o \_R, H i \_R, N\right)$ or $Y=$ upcoef ( $0, \mathrm{X}$, Lo_R, Hi_R, $\bar{N}, \mathrm{~L}$ ), Lo_R is the reconstruction low-pass filter and Hi_R is the reconstruction high-pass filter.
$\mathrm{Y}=\operatorname{upcoef}(0, \mathrm{X}, '$ wname ' ' $)$ is equivalent to $\mathrm{Y}=$ upcoef(0,X,'wname'',1).
$Y=\operatorname{upcoef}\left(0, X, L o \_R, H i \_R\right)$ is equivalent to $Y=$ upcoef(0,X,Lo_R,Hi_R,1).

Examples

```
% The current extension mode is zero-padding (see dwtmode).
% Approximation signals, obtained from a single coefficient
% at levels 1 to 6.
cfs = [1]; % Decomposition reduced a single coefficient.
essup = 10; % Essential support of the scaling filter db6.
figure(1)
for i=1:6
 % Reconstruct at the top level an approximation
 % which is equal to zero except at level i where only
 % one coefficient is equal to 1.
 rec = upcoef('a',cfs,'db6',i);
 % essup is the essential support of the
 % reconstructed signal.
 % rec(j) is very small when j is essup.
 ax = subplot(6,1,i),h = plot(rec(1:essup));
 set(ax,'xlim',[1 325]);
 essup = essup*2;
end
subplot(611)
title(['Approximation signals, obtained from a single ' ...
 'coefficient at levels 1 to 6'])
% Editing some graphical properties,
% the following figure is generated.
```

Approximation signals, obtained from a single coefficient at levels 1 to 6

\% The same can be done for details.
\% Details signals, obtained from a single coefficient \% at levels 1 to 6.
cfs = [1];
$\mathrm{mi}=12$; ma $=30$; $\%$ Essential support of
\% the wavelet filter db6.
rec = upcoef('d',cfs,'db6',1);
figure(2)
subplot(611), plot(rec(3:12))
for $i=2: 6$
\% Reconstruct at top level a single detail
\% coefficient at level i.
rec $=$ upcoef('d',cfs,'db6',i);
subplot(6,1,i), plot(rec(mi*2^(i-2):ma*2^(i-2)))
end
subplot(611)
title(['Detail signals obtained from a single ' ...
'coefficient at levels 1 to 6'])
\% Editing some graphical properties,
\% the following figure is generated.


## Algorithms

See Also
upcoef is equivalent to an $N$ time repeated use of the inverse wavelet transform.

Purpose
Direct reconstruction from 2-D wavelet coefficients
Syntax

```
Y = upcoef2(0,X,'wname',N,S)
Y = upcoef2(0,X,Lo_R,Hi_R,N,S), Lo_R
\(Y=\) upcoef2(0,X,'wname',N)
\(Y=\operatorname{upcoef} 2\left(0, X, L o _R, H i _R, N\right)\)
\(Y=u p c o e f 2(0, X\), 'wname')
\(Y=\operatorname{upcoef} 2(0, X\), 'wname ', 1\()\)
\(Y=\operatorname{upcoef} 2\left(0, X, L_{0} _R, H i _R\right)\)
\(Y=\operatorname{upcoef} 2\left(0, X, L o _R, H i _R, 1\right)\)
```


## Description

## Examples

upcoef2 is a two-dimensional wavelet analysis function.
$\mathrm{Y}=$ upcoef2( $0, \mathrm{X}$, 'wname ' $\mathrm{N}, \mathrm{S}$ ) computes the N -step reconstructed coefficients of matrix $X$ and takes the central part of size $S$. 'wname' is a string containing the name of the wavelet. See wfilters for more information.
If $0=$ ' a ', approximation coefficients are reconstructed; otherwise if $0=$ 'h' ('v' or 'd', respectively), horizontal (vertical or diagonal, respectively) detail coefficients are reconstructed. $N$ must be a strictly positive integer.
Instead of giving the wavelet name, you can give the filters.
For $Y=$ upcoef2( $0, X$, Lo_R,Hi_R,N,S), Lo_R is the reconstruction low-pass filter and Hi_R is the reconstruction high-pass filter.
$Y=\operatorname{upcoef} 2(0, X, ' w n a m e ', N)$ or $Y=$ upcoef2( $0, X$, Lo_R,Hi_R,N) returns the computed result without any truncation.
$Y=$ upcoef2 $(0, X$, 'wname' $)$ is equivalent to $Y=$ upcoef2(0, X, 'wname', 1).
$Y=$ upcoef2 $(0, X$, Lo_R,Hi_R) is equivalent to
$Y=\operatorname{upcoef} 2\left(0, X\right.$, Lo_R $^{2}$, Hi_R $\left.^{2} 1\right)$.
\% The current extension mode is zero-padding (see dwtmode).
\% Load original image.

```
load woman;
% X contains the loaded image.
% Perform decomposition at level 2
% of X using db4.
[c,s] = wavedec2(X,2,'db4');
% Reconstruct approximation and details
% at level 1, from coefficients.
% This can be done using wrcoef2, or
% equivalently using:
%
% Step 1: Extract coefficients from the
% decomposition structure [c,s].
%
% Step 2: Reconstruct using upcoef2.
siz = s(size(s,1),:);
ca1 = appcoef2(c,s,'db4',1);
a1 = upcoef2('a',ca1,'db4',1,siz);
chd1 = detcoef2('h', c,s,1);
hd1 = upcoef2('h',chd1,'db4',1,siz);
cvd1 = detcoef2('v', c,s,1);
vd1 = upcoef2('v',cvd1,'db4',1,siz);
cdd1 = detcoef2('d', c,s,1);
dd1 = upcoef2('d',cdd1,'db4',1,siz);
```


## Algorithms See upcoef.

## See Also <br> idwt2

## Purpose <br> Single-level reconstruction of 1-D wavelet decomposition

## Syntax

Description

Examples
[NC,NL, cA] = upwlev(C,L,'wname')
upwlev is a one-dimensional wavelet analysis function.
[NC,NL, CA] = upwlev(C,L,'wname') performs the single-level reconstruction of the wavelet decomposition structure [ $\mathrm{C}, \mathrm{L}$ ] giving the new one [ $N C, N L$ ], and extracts the last approximation coefficients vector cA.
[ $C, L$ ] is a decomposition at level $n=$ length $(L)-2$, so [ $N C, N L$ ] is the same decomposition at level $n-1$ and $c A$ is the approximation coefficients vector at level $n$.
'wname' is a string containing the wavelet name, C is the original wavelet decomposition vector, and $L$ the corresponding bookkeeping vector (for detailed storage information, see wavedec ).

Instead of giving the wavelet name, you can give the filters.
For [NC,NL, CA] = upwlev(C,L,Lo_R,Hi_R), Lo_R is the reconstruction low-pass filter and Hi_R is the reconstruction high-pass filter.

```
% The current extension mode is zero-padding (see dwtmode).
% Load original one-dimensional signal.
load sumsin; s = sumsin;
% Perform decomposition at level 3 of s using db1.
[c,l] = wavedec(s,3,'db1');
subplot(311); plot(s);
title('Original signal s.');
subplot(312); plot(c);
title('Wavelet decomposition structure, level 3')
xlabel(['Coefs for approx. at level 3 ' ...
 'and for det. at levels 3, 2 and 1'])
% One step reconstruction of the wavelet decomposition
```

\% structure at level 3 [c,l], so the new structure [nc,nl]
\% is the wavelet decomposition structure at level 2.
[nc, nl] = upwlev(c,l,'db1');
subplot(313); plot(nc);
title('Wavelet decomposition structure, level 2')
xlabel(['Coefs for approx. at level 2 ' ...
'and for det. at levels 2 and 1'])
\% Editing some graphical properties,
\% the following figure is generated.
Original signal s.

Wavelet decomposition structure, level 3

Coefs for approx. at level 3 and fordet. at levels 3, 2 and 1 Wavelet decomposition structure, level 2


## See Also

idwt
How To • upcoef

- wavedec


## Purpose

Single-level reconstruction of 2-D wavelet decomposition

## Syntax

```
[NC,NS,cA] = upwlev2(C,S,'wname')
[NC,NS,cA] = upwlev2(C,S,Lo_R,Hi_R)
```


## Description

Examples \% The current extension mode is zero-padding (see dwtmode).

```
% Load original image.
```

load woman;
\% X contains the loaded image.
\% Perform decomposition at level 2
\% of $X$ using db1.
[c,s] = wavedec2(X,2,'db1');
sc = size(c)
sc =

165536

```
 val_s = s
 val_s =
 64 64
 64 64
 128 128
 256 256
 % One step reconstruction of wavelet
 % decomposition structure [c,s].
 [nc,ns] = upwlev2(c,s,'db1');
snc = size(nc)
snc =
 1 65536
val_ns = ns
val_ns =
 128 128
 128 128
 256 256
```

See Also idwt2 | upcoef2 | wavedec2

## Purpose

Laurent polynomials associated with wavelet

## Syntax

[Hs,Gs,Ha,Ga] = wave2lp(W)
[Hs,Gs, Ha, Ga] = wave2lp(W) returns the four Laurent polynomials associated with the wavelet $W$ (see liftwave).

The pairs (Hs,Gs) and (Ha,Ga) are the synthesis and the analysis pair respectively.

The H-polynomials (G-polynomials) are low-pass (high-pass) polynomials.
For an orthogonal wavelet, $\mathrm{Hs}=\mathrm{Ha}$ and $\mathrm{Gs}=\mathrm{Ga}$.

## Examples

\% Get Laurent polynomials associated to the "lazy" wavelet. [Hs,Gs,Ha,Ga] = wave2lp('lazy')
$H s(z)=1$
Gs $(z)=z^{\wedge}(-1)$
$H a(z)=1$
$G a(z)=z^{\wedge}(-1)$
\% Get Laurent polynomials associated to the db1 wavelet. [Hs,Gs,Ha,Ga] = wave2lp('db1')

Hs (z) = + 0.7071 + 0.7071*z^(-1)
Gs $(z)=-0.7071+0.7071^{*} z^{\wedge}(-1)$
$\mathrm{Ha}(\mathrm{z})=+0.7071+0.7071 * \mathrm{z}^{\wedge}(-1)$
$G a(z)=-0.7071+0.7071 * z^{\wedge}(-1)$
\% Get Laurent polynomials associated to the bior1.3 wavelet. [Hs,Gs,Ha,Ga] = wave2lp('bior1.3')

```
\(\mathrm{Hs}(\mathrm{z})=+0.7071+0.7071 * \mathrm{z}^{\wedge}(-1)\)
Gs(z) = ..
 \(+0.08839^{*} z^{\wedge}(+2)+0.08839^{*} z^{\wedge}(+1)-0.7071+0.7071^{*} z^{\wedge}(-1)\)
0.08839*z^(-2) ...
 - 0.08839*z^(-3)
\(\mathrm{Ha}(\mathrm{z})=.\).
 \(-0.08839^{*} z^{\wedge}(+2)+0.08839 * z^{\wedge}(+1)+0.7071+0.7071^{*} z^{\wedge}(-1)+\)
\(0.08839^{*} z^{\wedge}(-2) \quad .\).
 - 0.08839*z^(-3)
\(\mathrm{Ga}(\mathrm{z})=-0.7071+0.7071^{*} \mathrm{z}^{\wedge}(-1)\)
```

See Also
laurpoly

## Purpose

Multilevel 1-D wavelet decomposition
[C,L] = wavedec(X,N,'wname')
[C,L] = wavedec(X,N,Lo_D,Hi_D)
wavedec performs a multilevel one-dimensional wavelet analysis using either a specific wavelet ('wname') or a specific wavelet decomposition filters (Lo_D and Hi_D, see wfilters).

Note wavedec supports only Type 1 (orthogonal) or Type 2 (biorthogonal) wavelets.
[C,L] = wavedec(X,N,'wname') returns the wavelet decomposition of the signal $X$ at level $N$, using 'wname '. $N$ must be a strictly positive integer (see wmaxlev for more information). The output decomposition structure contains the wavelet decomposition vector $C$ and the bookkeeping vector L . The structure is organized as in this level-3 decomposition example.

## Deconposition:


[C,L] = wavedec (X,N,Lo_D, Hi_D) returns the decomposition structure as above, given the low- and high-pass decomposition filters you specify.

```
Examples
\% The current extension mode is zero-padding (see dwtmode).
\% Load original one-dimensional signal.
load sumsin; s = sumsin;
\% Perform decomposition at level 3 of \(s\) using db1.
[\(\mathrm{c}, \mathrm{l}]=\) wavedec (s,3,'db1');
\% Using some plotting commands,
\% the following figure is generated.
```

Original signal s.


## Algorithms

Given a signal $s$ of length $N$, the DWT consists of $\log _{2} N$ stages at most. The first step produces, starting from $s$, two sets of coefficients: approximation coefficients $C A_{1}$, and detail coefficients $C D_{1}$. These vectors are obtained by convolving $s$ with the low-pass filter Lo_D for approximation, and with the high-pass filter Hi_D for detail, followed by dyadic decimation (downsampling).

More precisely, the first step is


The length of each filter is equal to $2 N$. If $n=$ length $(s)$, the signals $F$ and $G$ are of length $n+2 N-1$ and the coefficients $c A_{1}$ and $c D_{1}$ are of length
floor $\left(\frac{n-1}{2}\right)+N$
The next step splits the approximation coefficients $c A_{1}$ in two parts using the same scheme, replacing $s$ by $c A_{1}$, and producing $c A_{2}$ and $c D_{2}$, and so on

## One-Dimensional DWT

Decompositionstep


The wavelet decomposition of the signal $s$ analyzed at level $j$ has the following structure: $\left[c A_{j}, c D_{j}, \ldots, c D_{l}\right]$.
This structure contains, for $J=3$, the terminal nodes of the following tree:


References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed.

Mallat, S. (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp 674-693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also dwt | waveinfo | waverec | wfilters | wmaxlev

## Purpose Multilevel 2-D wavelet decomposition

## Syntax <br> [C,S] = wavedec2(X,N,'wname') <br> [C,S] = wavedec2(X,N,Lo_D,Hi_D)

## Description

wavedec 2 is a two-dimensional wavelet analysis function.
[C,S] = wavedec2(X,N,'wname') returns the wavelet decomposition of the matrix X at level N , using the wavelet named in string 'wname' (see wfilters for more information).

Outputs are the decomposition vector C and the corresponding bookkeeping matrix S.

N must be a strictly positive integer (see wmaxlev for more information).
Instead of giving the wavelet name, you can give the filters.
For [C,S] = wavedec2(X,N,Lo_D,Hi_D), Lo_D is the decomposition low-pass filter and Hi_D is the decomposition high-pass filter.

Vector C is organized as
$C=[A(N)|H(N)| V(N)|D(N)| \ldots$
$H(N-1)|V(N-1)| D(N-1)|\ldots| H(1)|V(1)| D(1)]$.
where $A, H, V, D$, are row vectors such that

- $A=$ approximation coefficients
- $\mathrm{H}=$ horizontal detail coefficients
- $\mathrm{V}=$ vertical detail coefficients
- $\mathrm{D}=$ diagonal detail coefficients
- Each vector is the vector column-wise storage of a matrix.

Matrix $S$ is such that

- $S(1,:)=$ size of approximation coefficients( N ).
- $S(i,:)=$ size of detail coefficients(N-i+2) for $i=2, \ldots N+1$ and $\mathrm{S}(\mathrm{N}+2,:)=\operatorname{size}(\mathrm{X})$.


Tips
When X represents an indexed image, X , as well as the output arrays $\mathrm{cA}, \mathrm{cH}, \mathrm{cV}$, and cD are m-by-n matrices. When X represents a truecolor image, it is an m-by-n-by-3 array, where each m-by-n matrix represents a red, green, or blue color plane concatenated along the third dimension. The size of vector $C$ and the size of matrix $S$ depend on the type of analyzed image.

For a truecolor image, the decomposition vector C and the corresponding bookkeeping matrix $S$ can be represented as follows.

C ( $3 \mathrm{n}+1$ sections)


For more information on image formats, see the image and imfinfo reference pages.

```
Examples
% The current extension mode is zero-padding (see dwtmode).
% Load original image.
load woman;
% X contains the loaded image.
% Perform decomposition at level 2
% of X using db1.
[c,s] = wavedec2(X,2,'db1');
% Decomposition structure organization.
sizex = size(X)
sizex =
 256 256
sizec = size(c)
sizec =
 1 65536
 val_s = s
val_s =
 64 64
 64 64
 128 128
 256 256
```

Algorithms

For images, an algorithm similar to the one-dimensional case is possible for two-dimensional wavelets and scaling functions obtained from one-dimensional ones by tensor product.
This kind of two-dimensional DWT leads to a decomposition of approximation coefficients at level $j$ in four components: the
approximation at level $j+1$, and the details in three orientations (horizontal, vertical, and diagonal).

The following chart describes the basic decomposition step for images:

## Two-Dimensional DWT

## Decomposition step


where
2\$1 Downsample columns: keep the even indexed columns
$1 \downarrow 2$ Downsample rows: keep the even indexed rows
rows
X Convolve with filter X the rows of the entry columns

X Convolve with filter X the columns of the entry

Initialization $c A_{0}=s$ for the decomposition initialization
So, for $J=2$, the two-dimensional wavelet tree has the form


## References <br> Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed.

Mallat, S. (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674-693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also dwt | waveinfo | waverec2 | wfilters | wmaxlev

## Purpose

Multilevel 3-D wavelet decomposition

## Syntax

WDEC = wavedec3(X,N,'wname')
WDEC = wavedec3(X,N,'wname','mode','ExtM')
WDEC = wavedec3(X,N,\{LoD,HiD,LoR,HiR\})

## Description

wavedec3 is a three-dimensional wavelet analysis function.

WDEC = wavedec3(X,N, 'wname') returns the wavelet decomposition of the 3 -D array X at level N , using the wavelet named in string 'wname ' or the particular wavelet filters you specify. It uses the default extension mode 'sym'. See dwtmode. $N$ must be a positive integer.

WDEC = wavedec3(X,N,'wname','mode', 'ExtM') uses the specified DWT extension mode.

WDEC = wavedec3(X,N,\{LoD,HiD, LoR,HiR\}) uses the decomposition and reconstruction filters you specify in a cell array.

WDEC is the output decomposition structure, with the following fields:

| sizeINI | Size of the three-dimensional array X |
| :--- | :--- |
| level | Level of the decomposition |
| mode | Name of the wavelet transform extension mode |
| filters | Structure with 4 fields, LoD, HiD, LoR, HiR, which <br> contain the filters used for DWT. |


| dec | $\mathrm{N} \times 1$ cell array containing the coefficients of the decomposition. $N$ is equal to $7 *$ WDEC. level +1 . <br> $\operatorname{dec}\{1\}$ contains the lowpass component (approximation) at the level of the decomposition. The approximation is equivalent to the filtering operations 'LLL'. <br> $\operatorname{dec}\{\mathrm{k}+2\}, \ldots, \operatorname{dec}\{\mathrm{k}+8\}$ with $\mathrm{k}=$ $0,7,14, \ldots, 7^{*}$ (WDEC. level-1) contain the 3 -D wavelet coefficients for the multiresolution starting with the coarsest level when $\mathrm{k}=0$. <br> For example, if WDEC.level=3, $\operatorname{dec}\{2\}, \ldots, \operatorname{dec}\{8\}$ contain the wavelet coefficients for level 3 ( $k=0$ ), dec $\{9\}, \ldots, \operatorname{dec}\{15\}$ contain the wavelet coefficients for level 2 ( $k=7$ ), and $\operatorname{dec}\{16\}, \ldots, \operatorname{dec}\{22\}$ contain the wavelet coefficients for level 1 ( $k=7 *$ (WDEC. level-1)). <br> At each level, the wavelet coefficients in $\operatorname{dec}\{k+2\}, \ldots, \operatorname{dec}\{k+8\}$ are in the following order: 'HLL','LHL','HHL','LLH','HLH','LHH','HHH'. <br> The strings give the order in which the separable filtering operations are applied from left to right. For example, 'LHH' means that the lowpass (scaling) filter with downsampling is applied to the rows of X , followed by the highpass (wavelet) filter with downsampling applied to the columns of X. Finally, the highpass filter with downsampling is applied to the 3rd dimension of $X$. |
| :---: | :---: |
| sizes | Successive sizes of the decomposition components |

```
3-D Construct 8-by-8-by-8 matrix. Obtain the 3-D discrete wavelet
Discrete
Wavelet
Transfrom
Construct 8 -by-8-by- 8 matrix. Obtain the 3 -D discrete wavelet transform at level 1 using the Haar wavelet and the default whole-point symmetric extension mode.
```

```
% Matrix of integers 1:64
```

% Matrix of integers 1:64
M = magic(8);
M = magic(8);
% Make data 3-D
% Make data 3-D
X = repmat(M,[1 1 8]);
X = repmat(M,[1 1 8]);
% Decompose X at level 1 using db1.
% Decompose X at level 1 using db1.
wd1 = wavedec3(X,1,'db1');

```
wd1 = wavedec3(X,1,'db1');
```

3-D Specify the decomposition and reconstruction filters as a cell array.
Wavelet
Transform
Using
Specified Decomposition and $\quad$ \% Matrix of integers 1:64

Reconstruction Filters

M = magic (8);
\% Make data 3-D
X = repmat (M,[118]);
[LoD,HiD,LoR,HiR] = wfilters('db2');
wd2 = wavedec3(X,2,\{LoD,HiD,LoR,HiR\},'mode','per');

Coefficient
Order
in 3-D
Wavelet
Transform

Compare the output of wavedec3 and dwt3 to illustrate the ordering of the 3-D wavelet coefficients described in the dec field description.
$X=$ reshape (1:512, 8, 8, 8);
dwtOut = dwt3(X,'db1','mode','per');
wdec = wavedec3(X,1,'db1','mode','per');
max(abs((wdec.dec\{4\}(:)-dwtOut.dec\{2,2,1\}(:))))
$\max (\operatorname{abs}((w d e c . \operatorname{dec}\{5\}(:)-$ dwtOut.dec\{1,1,2\}(:))))

See Also dwt3 | dwtmode | waveinfo | waverec3 | wfilters | wmaxlev

## Purpose Wavelet Toolbox software examples

## Syntax

Description wavedemo opens a GUI that allows you to choose between several Wavelet Toolbox examples.

Purpose Wavelet and scaling functions

```
Syntax [PHI,PSI,XVAL] = wavefun('wname',ITER)
[PHI1,PSI1,PHI2,PSI2,XVAL] = wavefun('wname',ITER)
[PHI,PSI,XVAL] = wavefun('wname',ITER)
[PSI,XVAL] = wavefun('wname',ITER)
[...] = wavefun(wname,A,B)
[...] = wavefun('wname',max(A,B))
[...] = wavefun('wname',0)
[...] = wavefun('wname',8,0)
[...] = wavefun('wname')
[...] = wavefun('wname',8)
```


## Description The function wavefun returns approximations of the wavelet function

 'wname ' and the associated scaling function, if it exists. The positive integer ITER determines the number of iterations computed; thus, the refinement of the approximations.For an orthogonal wavelet:
[PHI,PSI,XVAL] = wavefun('wname',ITER) returns the scaling and wavelet functions on the points grid XVAL.

For a biorthogonal wavelet:
[PHI1,PSI1, PHI2,PSI2, XVAL] = wavefun('wname', ITER) returns the scaling and wavelet functions both for decomposition (PHI1, PSI1) and for reconstruction (PHI2, PSI2).

For a Meyer wavelet:
[PHI,PSI,XVAL] = wavefun('wname',ITER)
For a wavelet without scaling function (e.g., Morlet, Mexican Hat, Gaussian derivatives wavelets or complex wavelets):
[PSI,XVAL] = wavefun('wname',ITER)
$[\ldots]=$ wavefun(wname $, A, B)$, where $A$ and $B$ are positive integers, is equivalent to $[\ldots]=$ wavefun('wname', $\max (A, B)$ ), and draws plots.

When $A$ is set equal to the special value 0 ,

- [...] = wavefun('wname', 0 ) is equivalent to
- $[\ldots]=$ wavefun('wname', 8,0 ).
- $[. .]=$. wavefun('wname') is equivalent to
- [...] = wavefun('wname', 8).

The output arguments are optional.
Examples
On the following graph, 10 piecewise linear approximations of the sym4 wavelet obtained after each iteration of the cascade algorithm are shown.
\% Set number of iterations and wavelet name.
iter = 10;
wav = 'sym4';
\% Compute approximations of the wavelet function using the \% cascade algorithm.

```
for i = 1:iter
```

    [phi,psi,xval] = wavefun(wav,i);
    plot(xval,psi);
    hold on
    end
title(['Approximations of the wavelet ', wav, ...
' for 1 to ',num2str(iter),' iterations']);
hold off


## Algorithms

For compactly supported wavelets defined by filters, in general no closed form analytic formula exists.

The algorithm used is the cascade algorithm. It uses the single-level inverse wavelet transform repeatedly.

Let us begin with the scaling function $\varphi$.
Since $\varphi$ is also equal to $\varphi_{0,0}$, this function is characterized by the following coefficients in the orthogonal framework:

- $<\varphi, \varphi_{0, n}>=1$ only if $n=0$ and equal to 0 otherwise
- $\left\langle\varphi, \Psi_{-j, k}>=0\right.$ for positive $j$, and all $k$.

This expansion can be viewed as a wavelet decomposition structure.
Detail coefficients are all zeros and approximation coefficients are all zeros except one equal to 1 .

Then we use the reconstruction algorithm to approximate the function $\varphi$ over a dyadic grid, according to the following result:

For any dyadic rational of the form $x=n 2^{-j}$ in which the function is continuous and where $j$ is sufficiently large, we have pointwise convergence and

$$
\left\lvert\, \phi(x)-2^{\frac{j}{2}}\left\langle\phi, \phi_{\left.-j, n 2^{j-J}\right\rangle}\right| \leq C .2^{-j \alpha}\right.
$$

where $C$ is a constant, and $\alpha$ is a positive constant depending on the wavelet regularity.

Then using a good approximation of $\varphi$ on dyadic rationals, we can use piecewise constant or piecewise linear interpolations $\eta$ on dyadic intervals, for which uniform convergence occurs with similar exponential rate:

$$
\|\phi-\eta\|_{\infty} \leq C .2^{-j \alpha}
$$

So using a $J$-step reconstruction scheme, we obtain an approximation that converges exponentially towards $\varphi$ when $J$ goes to infinity.

Approximations are computed over a grid of dyadic rationals covering the support of the function to be approximated.
Since a scaled version of the wavelet function $\Psi$ can also be expanded on the $\left(\varphi_{-1, n}\right)_{n}$, the same scheme can be used, after a single-level reconstruction starting with the appropriate wavelet decomposition structure. Approximation coefficients are all zeros and detail coefficients are all zeros except one equal to 1 .

For biorthogonal wavelets, the same ideas can be applied on each of the two multiresolution schemes in duality.

Note This algorithm may diverge if the function to be approximated is not continuous on dyadic rationals.

[^9]Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge Press.

## See Also <br> intwave | waveinfo | wfilters

```
Purpose Wavelet and scaling functions 2-D
Syntax [PHI,PSI,XVAL] = wavefun('wname',ITER)
[S,W1,W2,W3,XYVAL] = wavefun2('wname',ITER,'plot')
[S,W1,W2,W3,XYVAL] = wavefun2(wname,A,B)
[S,W1,W2,W3,XYVAL] = wavefun2('wname',max(A,B))
[S,W1,W2,W3,XYVAL] = wavefun2('wname',0)
[S,W1,W2,W3,XYVAL] = wavefun2('wname',4,0)
[S,W1,W2,W3,XYVAL] = wavefun2('wname')
[S,W1,W2,W3,XYVAL] = wavefun2('wname',4)
```


## Description

For an orthogonal wavelet 'wname ', wavefun2 returns the scaling function and the three wavelet functions resulting from the tensor products of the one-dimensional scaling and wavelet functions.

If [PHI, PSI, XVAL] = wavefun('wname', ITER), the scaling function S is the tensor product of PHI and PSI.
The wavelet functions W1, W2, and W3 are the tensor products (PHI,PSI), (PSI,PHI), and (PSI,PSI), respectively.

The two-dimensional variable XYVAL is a $2^{\text {ITER }} \times 2^{\text {ITER }}$ points grid obtained from the tensor product (XVAL,XVAL).

The positive integer ITER determines the number of iterations computed and thus, the refinement of the approximations.
[S,W1,W2,W3,XYVAL] = wavefun2('wname',ITER,'plot') computes and also plots the functions.
[S,W1,W2,W3,XYVAL] = wavefun2(wname, $\mathrm{A}, \mathrm{B}$ ), where A and B are positive integers, is equivalent to
[S,W1,W2,W3,XYVAL] = wavefun2('wname', max (A, B)). The resulting functions are plotted.

When $A$ is set equal to the special value 0 ,

- [S,W1,W2,W3,XYVAL] = wavefun2('wname', 0 ) is equivalent to [S,W1,W2,W3,XYVAL] = wavefun2('wname',4,0).
- [S,W1,W2,W3,XYVAL] = wavefun2('wname') is equivalent to [S,W1,W2,W3,XYVAL] = wavefun2('wname',4).

The output arguments are optional.

Note The wavefun2 function can only be used with an orthogonal wavelet.

## Examples

On the following graph, a linear approximation of the sym4 wavelet obtained using the cascade algorithm is shown.
\% Set number of iterations and wavelet name.
iter = 4;
wav = 'sym4';
\% Compute approximations of the wavelet and scale functions using
\% the cascade algorithm and plot.
[s,w1,w2,w3,xyval] = wavefun2(wav,iter,0);


## Algorithms

References Daubechies, I., Ten lectures on wavelets, CBMS, SIAM, 1992, pp. 202Äì213.

Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge Press.

See Also
intwave | wavefun | waveinfo | wfilters

## Purpose Wavelets information

## Syntax waveinfo('wname')

Description waveinfo provides information on all wavelets within the toolbox. waveinfo('wname') provides information on the wavelet family whose short name is specified by the string 'wname'. Available family short names are listed in the table below.

| Wavelet Family Short <br> Name | Wavelet Family Name |
| :--- | :--- |
| 'haar' | Haar wavelet |
| 'db' | Daubechies wavelets |
| 'sym' | Symlets |
| 'coif' | Coiflets |
| 'bior' | Biorthogonal wavelets |
| 'rbio' | Reverse biorthogonal wavelets |
| 'meyr' | Meyer wavelet |
| 'dmey' | Discrete approximation of Meyer <br> wavelet |
| 'gaus' | Gaussian wavelets |
| 'mexh' | Mexican hat wavelet |
| 'morl' | Morlet wavelet |
| 'cgau' | Complex Gaussian wavelets |
| 'shan' | Shannon wavelets |
| 'fbsp' | Frequency B-Spline wavelets |
| 'cmor' | Complex Morlet wavelets |

The family short names can also be user-defined ones (see wavemngr for more information).
waveinfo('wsys') provides information on wavelet packets.

```
Examples waveinfo('db')
DBINFO Information on Daubechies wavelets.
Daubechies Wavelets
General characteristics: Compactly supported
wavelets with extremal phase and highest
number of vanishing moments for a given
support width. Associated scaling filters are
minimum-phase filters.
Family Daubechies
Short name db
Order N N strictly positive integer
Examples db1 or haar, db4, db15
Orthogonal yes
Biorthogonal yes
Compact support yes
DWT possible
CWT possible
Support width 2N-1
Filters length 2N
Regularity about 0.2 N for large N
Symmetry far from
Number of vanishing moments for psi N
Reference: I. Daubechies,
Ten lectures on wavelets CBMS, SIAM, 61, 1994, 194-202.
```


## See Also <br> wavemngr

Purpose Wavelet families and family members

| Syntax | waveletfamilies('f') |
| :---: | :---: |
|  | waveletfamilies('n') |
|  | waveletfamilies('a') |

## Description

waveletfamilies or waveletfamilies('f') displays the names of all available wavelet families.
waveletfamilies(' $n$ ') displays the names of all available wavelets in each family.
waveletfamilies('a') displays all available wavelet families with their corresponding properties.

## Examples

waveletfamilies

| ================================= |  |
| :--- | :--- |
| Haar | haar |
| Daubechies | db |
| Symlets | sym |
| Coiflets | coif |
| BiorSplines | bior |
| ReverseBior | rbio |
| Meyer | meyr |
| DMeyer | dmey |
| Gaussian | gaus |
| Mexican_hat | mexh |
| Morlet | morl |
| Complex Gaussian | cgau |
| Shannon | shan |
| Frequency B-Spline | fbsp |
| Complex Morlet | cmor |
| $=================================$ |  |
|  |  |
| waveletfamilies('n') |  |



```
Gaussian gaus
gaus1 gaus2 gaus3 gaus4
gaus5 gaus6 gaus7 gaus8
gaus**
====================================
Mexican_hat mexh
====================================
Morlet morl
====================================
Complex Gaussian cgau
cgau1 cgau2 cgau3 cgau4
cgau5 cgau**
====================================
Shannon shan
shan1-1.5 shan1-1 shan1-0.5 shan1-0.1
shan2-3 shan**
```



```
Frequency B-Spline fbsp
fbsp1-1-1.5 fbsp1-1-1 fbsp1-1-0.5 fbsp2-1-1
fbsp2-1-0.5 fbsp2-1-0.1 fbsp**
===================================
Complex Morlet cmor
cmor1-1.5 cmor1-1 cmor1-0.5 cmor1-1
cmor1-0.5 cmor1-0.1 cmor**
```



```
waveletfamilies('a')
Type of Wavelets
type = 1 - orthogonals wavelets (F.I.R.)
type = 2 - biorthogonals wavelets (F.I.R.)
```

```
type = 3 - with scale function
type = 4 - without scale function
type = 5 - complex wavelet.
Family Name : Haar
haar
1
no
no
dbwavf
Family Name : Daubechies
db
1
12 3 4 5 6 7 8 9 10 **
integer
dbwavf
Family Name : Symlets
sym
1
2 3 4 5 6 7 8 **
integer
symwavf
Family Name : Coiflets
coif
1
12345
integer
coifwavf
```

```
Family Name : BiorSplines
bior
2
1.1 1.3 1.5 2.2 2.4 2.6 2.8 3.1 3.3 3.5 3.7 3.9 4.4 5.5 6.8
real
biorwavf
```

Family Name : ReverseBior
rbio
2
1.11 .31 .52 .22 .42 .62 .83 .13 .33 .53 .73 .94 .45 .56 .8
real
rbiowavf
Family Name : Meyer
meyr
3
no
no
meyer
-8 8
Family Name : DMeyer
dmey
1
no
no
dmey.mat
Family Name : Gaussian
gaus
4
12345678 **

```
integer
gauswavf
-5 5
Family Name : Mexican_hat
mexh
4
no
no
mexihat
-8 8
Family Name : Morlet
morl
4
no
no
morlet
-8 8
Family Name : Complex Gaussian
cgau
5
1234 5 **
integer
cgauwavf
-5 5
Family Name : Shannon
shan
5
1-1.5 1-1 1-0.5 1-0.1 2-3 **
string
shanwavf
-20 20
Family Name : Frequency B-Spline
```

```
fbsp
5
1-1-1.5 1-1-1 1-1-0.5 2-1-1 2-1-0.5 2-1-0.1 **
string
fbspwavf
-20 20
Family Name : Complex Morlet
cmor
5
1-1.5 1-1 1-0.5 1-1 1-0.5 1-0.1 **
string
cmorwavf
-8 8
```

See Also
wavemngr

Purpose
Wavelet Toolbox GUI tools

## Syntax

Description
wavemenu opens a menu for accessing the various graphical tools provided in the Wavelet Toolbox software.

## Examples

wavemenu


## Purpose Wavelet manager

```
Syntax wavemngr('add',FN,FSN,WT,NUMS,FILE)
wavemngr('add',FN,FSN,WT,NUMS,FILE,B)
wavemngr('add',FN,FSN,WT,{NUMS,TYPNUMS},FILE)
wavemngr('add',FN,FSN,WT,{NUMS,TYPNUMS},FILE,B)
```

Description wavemngr is a type of wavelets manager. It allows you to add, delete, restore, or read wavelets.
wavemngr('add', FN, FSN, WT, NUMS, FILE) or
wavemngr('add', FN, FSN, WT, NUMS, FILE, B) or
wavemngr('add', FN, FSN, WT, \{NUMS, TYPNUMS \}, FILE) or
wavemngr('add', FN, FSN, WT, \{NUMS, TYPNUMS \}, FILE , B), add a new wavelet family to the toolbox.

FN = Family Name (string)
FSN = Family Short Name (string of length equal or less than four characters)

WT defines the wavelet type:

- $\mathrm{WT}=1$, for orthogonal wavelets
- $W T=2$, for biorthogonal wavelets
- $W T=3$, for wavelet with scaling function
- $W T=4$, for wavelet without scaling function
- $W T=5$, for complex wavelet without scaling function

If the family contains a single wavelet, NUMS = ' '.
Examples:

```
mexh j
```

morl

If the wavelet is member of a finite family of wavelets, NUMS is a
string containing a blank separated list of items representing wavelet parameters.

Example:

```
bior NUMS = '1.1 1.3 ... 4.4 5.5 6.8'
```

If the wavelet is part of an infinite family of wavelets, NUMS is a string containing a blank separated list of items representing wavelet parameters, terminated by the special sequence **.

Examples:

| db | $\begin{aligned} & \text { NUMS } \\ & * * 1 \end{aligned}$ | 34 | 56 | 78 | 910 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| shan | NUMS $=$ '1-1.5 | 1-1 | 1-0.5 | 1-0.1 | 2-3 |

In these last two cases, TYPNUMS specifies the wavelet parameter input format: 'integer' or 'real' or 'string'; the default value is 'integer'.

Examples:

| db | TYPNUMS $=$ 'integer ' |
| :--- | :--- |
| bior | TYPNUMS $=$ 'real' |
| shan | TYPNUMS $=$ 'string ' |

FILE = MAT-file or code file name (string). See usage in the "Examples" section.
$B=[l b$ ub] specifies lower and upper bounds of effective support for wavelets of type $=3$, 4 , or 5 .

This option is fully documented in "Adding Your Own Wavelets" in the User's Guide.

## Examples

```
% List initial wavelets families.
 wavemngr('read')
ans =
====================================
Haar haar
Daubechies db
Symlets sym
Coiflets coif
BiorSplines bior
ReverseBior rbio
Meyer meyr
DMeyer dmey
Gaussian gaus
Mexican_hat mexh
Morlet morl
Complex Gaussian cgau
Shannon shan
Frequency B-Spline fbsp
Complex Morlet cmor
ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ=ニニ===
% List all wavelets.
wavemngr('read',1)
```

ans $=$
＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝＝
Haar haar
＝ニニニニニニニニニニニニニニニニニニニニニニニニニニニ＝＝＝＝＝＝＝
Daubechies db
$\qquad$
db1 db2 db3 db4
db5 db6 db7 db8
db9 db10 db**
ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ
Symlets

sym

```
sym2 sym3 sym4 sym5
```

sym6 sym7 sym8 sym**
==================================
Coiflets coif
coif1 coif2 coif3 coif4
coif5
===================================
BiorSplines bior
bior1.1 bior1.3 bior1.5 bior2.2
bior2.4 bior2.6 bior2.8 bior3.1
bior3.3 bior3.5 bior3.7 bior3.9
bior4.4 bior5.5 bior6.8
==================================
ReverseBior rbio
rbio1.1 rbio1.3 rbio1.5 rbio2.2
rbio2.4 rbio2.6 rbio2.8 rbio3.1
rbio3.3 rbio3.5 rbio3.7 rbio3.9
rbio4.4 rbio5.5 rbio6.8
==================================
Meyer meyr

```
====================================
DMeyer dmey
====================================
Gaussian
 gaus
gaus1 gaus2 gaus3 gaus4
gaus5 gaus6 gaus7 gaus8
gaus**
```



```
Mexican_hat mexh
====================================
Morlet morl
====================================
Complex Gaussian cgau
cgau1 cgau2 cgau3 cgau4
cgau5 cgau**
====================================
Shannon
shan
shan1-1.5 shan1-1 shan1-0.5 shan1-0.1
shan2-3 shan**
====================================
Frequency B-Spline fbsp
fbsp1-1-1.5 fbsp1-1-1 fbsp1-1-0.5 fbsp2-1-1
fbsp2-1-0.5 fbsp2-1-0.1 fbsp**
===================================
Complex Morlet cmor
cmor1-1.5 cmor1-1 cmor1-0.5 cmor1-1
cmor1-0.5 cmor1-0.1 cmor**
```



In the following example, new compactly supported orthogonal wavelets are added to the toolbox. These wavelets, which are a slight generalization of the Daubechies wavelets, are based on the use
of Bernstein polynomials and are due to Kateb and Lemarié in an unpublished work.

Note The files used in this example can be found in the wavedemo folder.

```
Add new family of orthogonal wavelets.
You must define:
%
% Family Name: Lemarie
% Family Short Name: lem
% Type of wavelet: 1 (orth)
% Wavelets numbers: 12345
% File driver: lemwavf
%
% The function lemwavf.m must be as follows:
% function w = lemwavf(wname)
% where the input argument wname is a string:
% wname = 'lem1' or 'lem2' ... i.e.,
% wname = sh.name + number
% and w the corresponding scaling filter.
% The addition is obtained using:
wavemngr('add','Lemarie','lem',1,'1 2 3 4 5','lemwavf');
% The ascii file 'wavelets.asc' is saved as
% 'wavelets.prv', then it is modified and
% the MAT file 'wavelets.inf' is generated.
% List wavelets families.
wavemngr('read')
ans =
====================================
Haar haar
Daubechies db
```

| Symlets | sym |
| :--- | :--- |
| Coiflets | coif |
| BiorSplines | bior |
| ReverseBior | rbio |
| Meyer | meyr |
| DMeyer | dmey |
| Gaussian | gaus |
| Mexican_hat | mexh |
| Morlet | morl |
| Complex Gaussian | cgau |
| Shannon | shan |
| Frequency B-Spline | fbsp |
| Complex Morlet | cmor |
| Lemarie | $l e m$ |

===================================
\% Remove the added family.
wavemngr('del','Lemarie');
\% List wavelets families.
wavemngr('read')
ans =
===================================
Haar haar
Daubechies db
Symlets sym
Coiflets coif
BiorSplines bior
ReverseBior rbio
Meyer meyr
DMeyer dmey
Gaussian gaus
Mexican_hat mexh
Morlet morl
Complex Gaussian cgau
Shannon shan
Frequency B-Spline fbsp

```
Complex Morlet cmor
====================================
% Restore the previous ascii file
% 'wavelets.prv', then build
% the MAT-file 'wavelets.inf'.
wavemngr('restore');
% List restored wavelets.
wavemngr('read',1)
ans =
====================================
Haar haar
====================================
Daubechies
 db
db1 db2 db3 db4
db5 db6 db7 db8
db9 db10 db**
====================================
Symlets sym
sym2 sym3 sym4 sym5
sym6 sym7 sym8 sym**
===================================
Coiflets coif
coif1 coif2 coif3 coif4
coif5
===================================
BiorSplines bior
bior1.1 bior1.3 bior1.5 bior2.2
bior2.4 bior2.6 bior2.8 bior3.1
bior3.3 bior3.5 bior3.7 bior3.9
bior4.4 bior5.5 bior6.8
```

= = = = = = = = = = = = = = = = = = = = = = = = = = = =

```
ReverseBior rbio
rbio1.1 rbio1.3 rbio1.5 rbio2.2
rbio2.4 rbio2.6 rbio2.8 rbio3.1
rbio3.3 rbio3.5 rbio3.7 rbio3.9
rbio4.4 rbio5.5 rbio6.8
```



```
Meyer meyr
```



```
DMeyer
dmey
```



```
Gaussian
gaus
gaus1 gaus2 gaus3 gaus4
gaus5 gaus6 gaus7 gaus8
gaus**
```



```
Mexican_hat mexh
```



```
Morlet morl
=ニニニニニニニニニニニニニニニニニニニニニニニニニニニニ==ニ===
Complex Gaussian cgau
cgau1 cgau2 cgau3 cgau4
cgau5 cgau**
```



```
Shannon shan
shan1-1.5 shan1-1 shan1-0.5 shan1-0.1
shan2-3 shan**
ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ=
Frequency B-Spline fbsp
fbsp1-1-1.5 fbsp1-1-1 fbsp1-1-0.5 fbsp2-1-1
fbsp2-1-0.5 fbsp2-1-0.1 fbsp**
```



```
Complex Morlet cmor
```

```
cmor1-1.5 cmor1-1 cmor1-0.5 cmor1-1
cmor1-0.5 cmor1-0.1 cmor**
====================================
Lemarie lem
lem1 lem2 lem3 lem4 lem5
====================================
% Restore initial wavelets.
%
% Restore the initial ascii file
% 'wavelets.ini' and initial
% MAT-file 'wavelets.bin'.
wavemngr('restore',0);
% List wavelets families.
wavemngr('read')
ans =
====================================
Haar haar
Daubechies db
Symlets sym
Coiflets coif
BiorSplines bior
ReverseBior rbio
Meyer meyr
DMeyer dmey
Gaussian gaus
Mexican_hat mexh
Morlet morl
Complex Gaussian cgau
Shannon shan
Frequency B-Spline fbsp
Complex Morlet cmor
====================================
% Add new family of orthogonal wavelets.
```

```
wavemngr('add','Lemarie','lem',1,'1 2 3','lemwavf');
% All command line capabilities are available for
% the new wavelets.
%
% Example 1: compute the four associated filters.
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('lem3');
% Example 2: compute scale and wavelet functions.
[phi,psi,xval] = wavefun('lem3');
% Add a new family of orthogonal wavelets: special form
% for the GUI mode.
%
% The file lemwavf allows you to compute the filter for
% any order. If you want to get a popup of the form
% 1 2 3 **, associated with the family, then wavelets are
% appended for GUI mode using:
wavemngr('restore',0);
wavemngr('add','Lemarie','lem',1,'1 2 3 **','lemwavf');
% After this sequence, all GUI capabilities are available for
% the new wavelets.
% Note that the last command allows a short cut in the
% order definition only if possible orders are integers.
```

Caution wavemngr works on the current folder. If you add a new wavelet family, it is available in this folder only. Refer to, "Adding Your Own Wavelets", in the User's Guide.

## Limitations

wavemngr allows you to add a new wavelet. You must verify that it is truly a wavelet. No check is performed either about this point or about the type of the new wavelet.

## Purpose Wavelet names for LWT

## Syntax $\quad w=$ wavenames $(T)$

Description $W=$ wavenames $(T)$ returns a cell array that contains the name of all wavelets of type $T$. The valid values for $T$ are

- 'all' - all wavelets
- 'lazy' - "lazy" wavelet
- 'orth' - orthogonal wavelets
- 'bior' - biorthogonal wavelets
$\mathrm{W}=$ wavenames is equivalent to $\mathrm{W}=$ wavenames('all').


## Purpose Multilevel 1-D wavelet reconstruction

```
Syntax waverec(wavedec(X,N,'wname'),'wname')
X = waverec(C,L,Lo_R,Hi_R)
X = waverec(C,L,'wname')
X = appcoef(C,L,'wname',0)
```


## Description

Examples
waverec performs a multilevel one-dimensional wavelet reconstruction using either a specific wavelet ('wname', see wfilters) or specific reconstruction filters (Lo_R and Hi_R). waverec is the inverse function of wavedec in the sense that the abstract statement waverec (wavedec (X,N,'wname'), 'wname') returns X.

Note waverec supports only Type 1 (orthogonal) or Type 2 (biorthogonal) wavelets.
$\mathrm{X}=$ waverec (C,L,'wname') reconstructs the signal X based on the multilevel wavelet decomposition structure [C,L] and wavelet 'wname'. (For information about the decomposition structure, see wavedec.)
$X$ = waverec (C,L,Lo_R,Hi_R) reconstructs the signal $X$ as above, using the reconstruction filters you specify. Lo_R is the reconstruction low-pass filter and Hi_R is the reconstruction high-pass filter.

Note that $X=$ waverec (C,L,'wname') is equivalent to $X=$ appcoef(C,L,'wname', 0).
\% The current extension mode is zero-padding (see dwtmode).
\% Load original one-dimensional signal.
load leleccum; s = leleccum(1:3920); ls = length(s);
\% Perform decomposition of signal at level 3 using db5. [c,l] = wavedec(s,3,'db5');

```
 % Reconstruct s from the wavelet decomposition structure [c,l].
a0 = waverec(c,l,'db5');
% Check for perfect reconstruction.
err = norm(s-a0)
err =
 3.2079e-09
```

appcoef | idwt | wavedec

| Purpose | Multilevel 2-D wavelet reconstruction |
| :---: | :---: |
| Syntax | ```X = waverec2(C,S,'wname') X = waverec2(C,S,Lo_R,Hi_R) waverec2(wavedec2(X,N,'wname'),'wname') X = waverec2(C,S,'wname') X = appcoef2(C,S,'wname',0)``` |
| Description | X = waverec2(C,S,'wname') performs a multilevel wavelet reconstruction of the matrix $X$ based on the wavelet decomposition structure [C, S]. For detailed storage information, see wavedec2. 'wname' is a string containing the name of the wavelet. See wfilters for more information. <br> Instead of specifying the wavelet name, you can specify the filters. <br> - X = waverec2(C,S,Lo_R,Hi_R), Lo_R is the reconstruction low-pass filter <br> - Hi_R is the reconstruction high-pass filter. <br> waverec2 is the inverse function of wavedec2 in the sense that the abstract statement waverec2(wavedec2(X,N,'wname'), 'wname') returns $X$. <br> $\mathrm{X}=$ waverec2(C,S,'wname') is equivalent to $\mathrm{X}=$ appcoef2(C,S,'wname',0). |
| Tips | If C and S are obtained from an indexed image analysis or a truecolor image analysis, X is an m-by-n matrix or an m-by-n-by- 3 array, respectively. <br> For more information on image formats, see the image and imfinfo reference pages. |
| Examples | ```% The current extension mode is zero-padding (see dwtmode). % Load original image. load woman; % X contains the loaded image.``` |

```
% Perform decomposition at level 2
% of X using sym4.
[c,s] = wavedec2(X,2,'sym4');
% Reconstruct X from the wavelet
% decomposition structure [c,s].
a0 = waverec2(c,s,'sym4');
% Check for perfect reconstruction.
max(max(abs(X-a0)))
ans =
 2.5565e-10
```

See Also appcoef2|idwt2| wavedec2

## Purpose <br> Multilevel 3-D wavelet reconstruction

Syntax<br>\section*{Description}

X = waverec3(WDEC)
C = waverec3(WDEC,TYPE,N)
X = waverec3(WDEC, 'a',0)
X = waverec3(WDEC,'ca',0)
C = waverec3(WDEC, TYPE)
C = waverec3(WDEC, TYPE,N)
waverec3 performs a multilevel 3-D wavelet reconstruction starting from a multilevel 3 -D wavelet decomposition.

X = waverec3(WDEC) reconstructs the 3-D array X based on the multilevel wavelet decomposition structure WDEC. You can also use waverec3 to extract coefficients from a 3-D wavelet decomposition.

WDEC is a structure with the fields shown in the table.
C = waverec3(WDEC, TYPE,N) reconstructs the multilevel components at level N of a 3-D wavelet decomposition. N must be a positive integer less than or equal to the level of the decomposition.

Valid values for TYPE are:

- A group of three characters ' $x y z$ ', one per direction, with ' $x$ ', ' $y$ ' and 'z' selected in the set \{'a', 'd', 'l', 'h'\} or in the corresponding uppercase set \{'A','D', 'L', 'H'\}), where 'A' (or 'L') is a low-pass filter and 'D' (or 'H') is a high-pass filter.
- The char 'd' (or 'h' or 'D' or 'H') gives the sum of all the components different from the low-pass.
- The char 'a' (or 'l' or 'A' or 'L') gives the low-pass component (the approximation at level N ).

For extraction, the valid values for TYPE are the same but prefixed by 'c' or 'C'.
$X=$ waverec3(WDEC, 'a', 0 ) or $X=$ waverec3(WDEC,'ca', 0 ) is equivalent to $X=$ waverec3(WDEC). $X$ is a reconstruction of the coefficients in WDEC at level 0.

C = waverec3(WDEC,TYPE) is equivalent to C = waverec3 (WDEC, TYPE, $N$ ) with $N$ equal to the level of the decomposition.

| sizeINI | Size of the three-dimensional array X |
| :---: | :---: |
| level | Level of the decomposition |
| mode | Name of the wavelet transform extension mode |
| filters | Structure with 4 fields, LoD, HiD, LoR, HiR, which contain the filters used for DWT |
| dec | $\mathrm{N} \times 1$ cell array containing the coefficients of the decomposition. $N$ is equal to $7 *$ WDEC. level +1 . <br> $\operatorname{dec}\{1\}$ contains the lowpass component (approximation) at the level of the decomposition. The approximation is equivalent to the filtering operations 'LLL'. <br> $\operatorname{dec}\{\mathrm{k}+2\}, \ldots, \operatorname{dec}\{\mathrm{k}+8\}$ with $\mathrm{k}=$ $0,7,14, \ldots, 7^{*}$ (WDEC. level-1) contain the 3 -D wavelet coefficients for the multiresolution starting with the coarsest level when $\mathrm{k}=0$. <br> For example, if WDEC.level=3, $\operatorname{dec}\{2\}, \ldots, \operatorname{dec}\{8\}$ contain the wavelet coefficients for level 3 ( $k=0$ ), $\operatorname{dec}\{9\}, \ldots, \operatorname{dec}\{15\}$ contain the wavelet coefficients for level 2 ( $k=7$ ), and $\operatorname{dec}\{16\}, \ldots, \operatorname{dec}\{22\}$ contain the wavelet coefficients for level 1 ( $k=7 *$ (WDEC. level-1)). <br> At each level, the wavelet coefficients in $\operatorname{dec}\{k+2\}, \ldots, \operatorname{dec}\{k+8\}$ are in the following order: <br> 'HLL', 'LHL','HHL','LLH','HLH','LHH','HHH'. <br> The strings give the order in which the separable filtering operations are applied from left to right. For example, 'LHH ' means that the lowpass (scaling) filter with downsampling is |


|  | applied to the rows of X, followed by the highpass <br> (wavelet) filter with downsampling applied <br> to the columns of X. Finally, the highpass <br> filter with downsampling is applied to the 3rd <br> dimension of X. |
| :--- | :--- |
| sizes | Successive sizes of the decomposition <br> components |

```
Perfect Construct a 3-D matrix, obtain the wavelet transform down to level
Reconstruction 2 using the db2 wavelet, and reconstruct the matrix to verify perfect
with 3-D
reconstruction.
Discrete
Wavelet
Transform
Construct a 3-D matrix, obtain the wavelet transform down to level 2 using the db2 wavelet, and reconstruct the matrix to verify perfect reconstruction.
Create 3-D matrix.
M = magic(8);
X = repmat (M,[11 1 8]);
```

Obtain the 3-D discrete wavelet transform of the matrix and reconstruct the input based on the 3-D approximation and detail coefficients.

```
wd = wavedec3(X,2,'db2');
XR = waverec3(wd);
```

Verify perfect reconstruction using the wavelet decomposition down to level 2.

```
err1 = max(abs(X(:)-XR(:)))
```

Verify that the data matrix is the sum of the approximation and the details from levels 2 and 1 .

A = waverec3(wd,'LLL');
\% Reconstruct the sum of components different from
\% the lowpass component.
D = waverec3(wd,'d');
\% Check that X = A + D.
err2 $=\max (a b s(X(:)-A(:)-D(:)))$

```
Compare waverec3 and idwt3
Compare level-1 reconstructions based on the filtering operations 'LLH' using idwt3 and waverec3.
dwtOut = dwt3(X,'db2');
Xr = idwt3(dwtOut,'LLH');
Xrec = waverec3(wd,'LLH',1); norm(Xr(:)-Xrec(:))
```

See Also idwt3 | waveinfo | wavedec3

Purpose Wavelet support
Syntax $\quad[\mathrm{LB}, \mathrm{UB}]=$ wavsupport (wname)
Description
[LB, UB] = wavsupport(wname) returns the lower bound, LB, and upper bound, UB, of the support for the wavelet specified by wname. wname is any valid wavelet. For real-valued wavelets with and without scaling functions and complex-valued wavelets without scaling functions (wavelets type 3,4, and 5), the bounds indicate the effective support of the wavelet. For orthogonal and biorthogonal wavelets (type 1 and type 2), the lower and upper bounds are -0.5* (LF-1) and 0.5* (LF-1), where LF is the length of the wavelet filter.

## Examples Support of Haar wavelet:

[LB, UB] = wavsupport('haar');
LowerBound = -0.5*(2-1);
UpperBound = 0.5*(2-1);
\% Compare [LB,UB] and [LowerBound, UpperBound]

Effective support of complex-valued Gaussian wavelet:
[LB, UB] = wavsupport('cgau3');
See Also wavemngr

## Purpose

Syntax

Description

Examples

Penalized threshold for wavelet 1-D or 2-D de-noising
THR $=$ wbmpen (C,L,SIGMA, ALPHA)
wbmpen(C,L,SIGMA, ALPHA, ARG)
THR $=$ wbmpen ( $C, L$, SIGMA, ALPHA $)$ returns global threshold THR for de-noising. THR is obtained by a wavelet coefficients selection rule using a penalization method provided by Birgé-Massart.
$[\mathrm{C}, \mathrm{L}]$ is the wavelet decomposition structure of the signal or image to be de-noised.

SIGMA is the standard deviation of the zero mean Gaussian white noise in de-noising model (see wnoisest for more information).

ALPHA is a tuning parameter for the penalty term. It must be a real number greater than 1 . The sparsity of the wavelet representation of the de-noised signal or image grows with ALPHA. Typically ALPHA $=2$.
THR minimizes the penalized criterion given by
let $t^{*}$ be the minimizer of

```
crit(t) = -sum(c(k)^2,k t) + 2*SIGMA^2*t*(ALPHA + log(n/t))
```

where $\mathrm{c}(\mathrm{k})$ are the wavelet coefficients sorted in decreasing order of their absolute value and $n$ is the number of coefficients; then THR = $\left|c\left(t^{*}\right)\right|$.
wbmpen ( $\mathrm{C}, \mathrm{L}$, SIGMA , ALPHA , ARG) computes the global threshold and, in addition, plots three curves:

```
- 2*SIGMA^2*t*(ALPHA + log(n/t))
- sum(c(k)^2,k, t)
- crit(t)
```

```
% Example 1: Signal de-noising.
% Load noisy bumps signal.
load noisbump; x = noisbump;
```

```
% Perform a wavelet decomposition of the signal
% at level 5 using sym6.
wname = 'sym6'; lev = 5;
[c,l] = wavedec(x,lev,wname);
% Estimate the noise standard deviation from the
% detail coefficients at level 1, using wnoisest.
sigma = wnoisest(c,l,1);
% Use wbmpen for selecting global threshold
% for signal de-noising, using the tuning parameter.
alpha = 2;
thr = wbmpen(c,l,sigma,alpha)
thr =
 2.7681
% Use wdencmp for de-noising the signal using the above
% threshold with soft thresholding and approximation kept.
keepapp = 1;
xd = wdencmp('gbl',c,l,wname,lev,thr,'s',keepapp);
% Plot original and de-noised signals.
figure(1)
subplot(211), plot(x), title('Original signal')
subplot(212), plot(xd), title('De-noised signal')
```



```
thr =
 36.0621
% Use wdencmp for de-noising the image using the above
% thresholds with soft thresholding and approximation kept.
keepapp = 1;
xd = wdencmp('gbl',c,s,wname,lev,thr,'s',keepapp);
% Plot original and de-noised images.
figure(2)
colormap(pink(nbc));
subplot(221), image(wcodemat(X,nbc))
title('Original image')
subplot(222), image(wcodemat(xd,nbc))
title('De-noised image')
```

Original image


De-noised image


See Also
wden | wdencmp | wpbmpen | wpdencmp

| Purpose | Extended pseudocolor matrix scaling |
| :--- | :--- |
| Syntax | $Y=\operatorname{wcodemat}(X)$ |
|  | $Y=w \operatorname{codemat}(X$, NBCODES $)$ |
|  | $Y=w \operatorname{codemat}(X, N B C O D E S, O P T)$ |
|  | $Y$ |

Description

## Examples

wcodemat rescales an input matrix to a specified range for display. If the specified range is the full range of the current colormap, wcodemat is similar in behavior to imagesc.
$Y=$ wcodemat $(X)$ rescales the matrix $X$ to integers in the range [1,16].
$Y=$ wcodemat (X, NBCODES) rescales the input $X$ as integers in the range [ 1, NBCODES] . The default value of NBCODES is 16 .
$Y=$ wcodemat (X,NBCODES,OPT) rescales the matrix along the dimension specified by OPT. Valid strings for OPT are: 'column ' (or 'c '), 'row' (or 'r'), and 'mat' (or 'm'). 'rows' scales X row-wise, 'column' scales X column-wise, and 'mat' scales X globally. The default value of OPT is 'mat'.
$Y$ = wcodemat(X,NBCODES,OPT,ABSOL) rescales the input matrix $X$ based on the absolute values of the entries in $X$ if ABSOL is nonzero, or based on the signed values of $X$ if $A B S O L$ is equal to zero. The default value of ABSOL is 1 .

Scale level-one approximation coefficients globally to the full range of the colormap.

```
load woman;
% Get the range of the colormap
NBCOL = size(map,1);
% Obtain the 2D dwt using the Haar wavelet
[cA1,cH1,cV1,cD1] = dwt2(X,'db1');
% Display without scaling
image(cA1);
colormap(map);
title('Unscaled Image');
```


## wcodemat

```
figure;
% Display with scaling
image(wcodemat(cA1,NBCOL));
colormap (map);
title('Scaled Image');
```


## Purpose Wavelet coherence

Syntax $\quad W C O H=$ wcoher(Sig1,Sig2,Scales, wname)
WCOH = wcoher(...,Name,Value)
[WCOH,WCS] = wcoher(...)
[WCOH,WCS,CWT_S1,CWT_S2] = wcoher(...)
[...] = wcoh(...,'plot')

Description

Input Arguments

WCOH = wcoher(Sig1,Sig2,Scales, wname) returns the wavelet coherence for the input signals Sig1 and Sig2 using the wavelet specified in wname at the scales in Scales. The input signals must be real-valued and equal in length.

WCOH = wcoher(..., Name, Value) returns the wavelet coherence with additional options specified by one or more Name, Value pair arguments.
[WCOH,WCS] = wcoher(...) returns the wavelet cross spectrum.
[WCOH,WCS,CWT_S1,CWT_S2] = wcoher(...) returns the continuous wavelet transforms of Sig1 and Sig2.
[...] = wcoh(...,'plot') displays the modulus and phase of the wavelet cross spectrum.

## Sig 1

A real-valued one-dimensional input signal. Sig1 is a row or column vector.

## Sig2

A real-valued one-dimensional input signal. Sig2 is a row or column vector.

## Scales

Scales is a vector of real-valued, positive scales at which to compute the wavelet coherence.

## wname

Wavelet used in the wavelet coherence. wname is any valid wavelet name.

## Name-Value Pair Arguments

## 'asc'

Scale factor for arrows in quiver plot. wcoher represents the phase using quiver. asc corresponds to the scale input argument in quiver.

Default: 1

## 'nas'

Number of arrows in scale. Together with the number of scales, nas determines the spacing between the $y$ coordinates in the input to quiver. The $y$ input to quiver is 1 :length(Scales)/(nas-1): Scales(end)

Default: 20

## 'nsw'

Length of smoothing window in scale. nsw is a positive integer that specifies the length of a moving average filter in scale.

## Default: 1

## 'ntw'

Length of smoothing window in time. ntw is a positive integer that specifies the length of a moving average filter in time.

Default: min $[20,0.05 *$ length(Sig1)]

## 'plot'

Type of plot. plot is one of the following strings:

- 'cwt'

Displays the continuous wavelet transforms of signals 1 and 2.

- 'wcs'

Displays the wavelet cross spectrum.

- 'wcoh'

Displays the phase of the wavelet cross spectrum.

- 'all'

Displays all plots in separate figures.

## Output <br> Arguments

## WCOH

Wavelet coherence.

## WCS

Wavelet cross spectrum.

## CWT_S 1

Continuous wavelet transform of signal 1.

## CWT_S2

Continuous wavelet transform of signal 2.

## Definitions Wavelet Cross Spectrum

The wavelet cross spectrum of two time series, $x$ and $y$ is:

$$
C_{x y}(a, b)=S\left(C_{x}^{*}(a, b) C_{y}(a, b)\right)
$$

where $C_{x}(a, b)$ and $C_{y}(a, b)$ denote the continuous wavelet transforms of $x$ and $y$ at scales $a$ and positions $b$. The superscript * is the complex conjugate and $S$ is a smoothing operator in time and scale.

For real-valued time series, the wavelet cross spectrum is real-valued if you use a real-valued analyzing wavelet, and complex-valued if you use a complex-valued analyzing wavelet.

## Wavelet Coherence

The wavelet coherence of two time series $x$ and $y$ is:

$$
\frac{S\left(C_{x}^{*}(a, b) C_{y}(a, b)\right)}{\left.\sqrt{S\left(\left|C_{x}(a, b)\right|^{2}\right.}\right) \sqrt{S\left(\left|C_{y}(a, b)\right|^{2}\right)}}
$$

where $C_{x}(a, b)$ and $C_{y}(a, b)$ denote the continuous wavelet transforms of $x$ and $y$ at scales $a$ and positions $b$. The superscript * is the complex conjugate and $S$ is a smoothing operator in time and scale.

For real-valued time series, the wavelet coherence is real-valued if you use a real-valued analyzing wavelet, and complex-valued if you use a complex-valued analyzing wavelet.

## Examples Wavelet coherence of sine waves in noise with delay:

```
t = linspace(0,1,2048);
x = sin(16*pi*t)+0.5*randn(1,2048);
y = sin(16*pi*t+pi/4)+0.5*randn(1,2048);
wname = 'cgau3';
scales = 1:512;
ntw = 21; % smoothing parameter
% Display the modulus and phased of the wavelet cross spectrum.
wcoher(x,y,scales,wname,'ntw',ntw,'plot');
```

Sine wave and Doppler signal:

```
t = linspace(0,1,1024);
x = -sin(8*pi*t) + 0.4*randn(1,1024);
x = x/max(abs(x));
y = wnoise('doppler',10);
```

```
wname = 'cgau3';
scales = 1:512;
ntw = 21; % smoothing parameter
% Display of the CWT of the two signals.
wcoher(x,y,scales,wname,'ntw',ntw,'plot','cwt');
% Display of the wavelet cross spectrum.
wcoher(x,y,scales,wname,'ntw',ntw,'nsw',1,'plot','wcs');
% Display of the modulus and phased of the wavelet cross spectrum.
wcoher(x,y,scales,wname,'ntw',ntw,'plot');
```

\author{

## References

}

See Also
cwt

Tutorials . "1-D Continuous Wavelet Analysis"<br>- "One-Dimensional Complex Continuous Wavelet Analysis"

How To • Wavelet Coherence

## Purpose True compression of images using wavelets

```
Syntax wcompress('c',X,SAV_FILENAME,COMP_METHOD)
wcompress(...,'ParName1',ParVal1,'ParName2',ParVal2,...)
[COMPRAT,BPP] = wcompress('c',...)
XC = wcompress('u',SAV_FILENAME)
XC = wcompress('u',SAV_FILENAME,'plot')
XC = wcompress('u',SAV_FILENAME,'step')
```


## Description

The wcompress command performs either compression or uncompression of grayscale or truecolor images.

More theoretical information on true compression is in "True Compression for Images" of the Wavelet Toolbox User's Guide.

## Compression

wcompress('c',X,SAV_FILENAME,COMP_METHOD) compresses the image $X$ using the compression method COMP_METHOD.

The compressed image is saved in the file SAV_FILENAME. X can be either a 2-D array containing an indexed image or a 3-D array of uint8 containing a truecolor image.
wcompress('c', FILENAME, ...) loads the image $X$ from the file FILENAME which is a MATLAB Supported Format (MSF) file: MAT-file or other image files (see imread).
wcompress('c', I,...) converts the indexed image $\mathrm{X}=\mathrm{I}\{1\}$ to a truecolor image $Y$ using the colormap map $=I\{2\}$ and then compresses Y.

The valid compression methods are divided in three categories.
1 Progressive Coefficients Significance Methods (PCSM):

| MATLAB Name | Compression Method Name |
| :--- | :--- |
| 'ezw' | Embedded Zerotree Wavelet |
| 'spint' | Set Partitioning In Hierarchical Trees |


| MATLAB Name | Compression Method Name |
| :--- | :--- |
| 'stw' | Spatial-orientation Tree Wavelet |
| 'wdr' | Wavelet Difference Reduction |
| 'aswdr' | Adaptively Scanned Wavelet Difference <br> Reduction |
| 'spint_3d' | Set Partitioning In Hierarchical Trees 3D for <br> truecolor images |

For more details on these methods, see the references and especially Walker and also Said and Pearlman.

2 Coefficients Thresholding Methods (CTM-1):

| MATLAB Name | Compression Method Name |
| :--- | :--- |
| 'lvl_mmc' | Subband thresholding of coefficients and <br> Huffman encoding |

For more details on this method, see the Strang and Nguyen reference.
3 Coefficients Thresholding Methods (CTM-2):

| MATLAB Name | Compression Method Name |
| :--- | :--- |
| 'gbl_mmc_f' | Global thresholding of coefficients and fixed <br> encoding |
| 'gbl_mmc_h' | Global thresholding of coefficients and <br> Huffman encoding |

Note The Discrete Wavelet Transform uses the periodized extension mode. Each of the two dimensions of the image must be a power of 2 .

All the compression methods use parameters which have default values. You can change these values using the following syntax:

```
wcompress(...,'ParName1',ParVal1,'ParName2',ParVal2,...)
```

Some of the parameters are related to display or to data transform functionalities. The others are linked to the compression process itself.

## Data transform parameters

- 'ParName' = 'wname' or 'WNAME' sets the wavelet name. ParVal is a string (see waveletfamilies). The default for is bior4.4
- 'ParName' = 'level' or 'LEVEL' sets the level of decomposition.

ParVal is an integer such that: $1 \leq$ level $\leq$ levmax which is the maximum possible level (see wmaxlev).

The default level depends on the method:

- for PCSM methods level is equal to levmax.
- for CTM methods level is equal to fix(levmax/2)
- ParName' = 'it' or 'IT' sets Image type Transform.

ParVal must be one of the following strings:
' n ' : no transformation (default), image type (truecolor or grayscale) is automatically detected.
' g ': grayscale transformation type.
' c ' : color transformation type (RGB uint8).

- 'ParName' = 'cc' or 'CC' sets Color Conversion parameter if X is a truecolor image.

ParVal must be one of the following strings:
'rgb' or 'none' : No conversion (default).
'yuv ': YUV color space transform.
'klt' : Karhunen-Loeve transform.
'yiq': YIQ color space transform.
'xyz' : CIEXYZ color space transform.

## Parameter for Progressive Coefficients Significance Methods (PCSM)

- 'ParName' = 'maxloop' or 'MAXLOOP' sets the maximum number of steps for the compression algorithm.

ParVal must be a positive integer or Inf (default is 10).

## Parameters for Coefficients Thresholding Methods (CTM-1)

Either of the following parameters may be used:

- 'ParName' = 'bpp' or 'BPP' sets the bit-per-pixel ratio.

ParVal must be such that $0 \leq$ ParVal $\leq 8$ (grayscale) or 24 (truecolor).

- 'ParName' = 'comprat' or 'COMPRAT' sets the compression ratio.

ParVal must be such that $0 \leq$ ParVal $\leq 100$.

## Parameters for Coefficients Thresholding Methods (CTM-2)

Two parameters may be used. The first is related to the threshold and the second is the number of classes for quantization.

The first one may be chosen among the five following parameters:

- 'ParName' = 'threshold' or 'THRESHOLD' sets the threshold value for compression.

ParVal must be a positive (or zero) real number.

- 'ParName' = 'nbcfs' or 'NBCFS' sets the number of preserved coefficients in the wavelet decomposition.

ParVal must be an integer such that: $0 \leq$ ParVal $\leq$ total number of coefficients of wavelet decomposition.

- 'ParName' = 'percfs' or 'PERCFS' sets the percentage of preserved coefficients in the wavelet decomposition.

ParVal must be a real number such that: $0 \leq$ ParVal $\leq 100$.

- 'ParName' = 'bpp' or 'BPP' sets the bit-per-pixel ratio.

ParVal must be such that: $0 \leq$ ParVal $\leq 8$ (grayscale) or 24 (truecolor)

- 'ParName' = 'comprat' or 'COMPRAT' sets the compression ratio. ParVal must be such that: $0 \leq$ ParVal $\leq 100$.

The second parameter sets the number of classes for quantization:

- 'ParName' = 'nbclas' or 'NBCLAS' sets the number of classes.

ParVal must be a real number such that: $2 \leq$ ParVal $\leq 200$.

## Display parameter

- 'ParName' = 'plotpar' or 'PLOTPAR' sets the plot parameter.

ParVal must be one of the following strings or numbers:
'plot' or 0: plots only the compressed image.
'step' or 1: displays each step of the encoding process (only for PCSM methods).
[COMPRAT,BPP] = wcompress('c',...) returns the compression ratio COMPRAT and the bit_per_pixel ratio BPP.

## Uncompression

XC = wcompress('u', SAV_FILENAME) uncompresses the file SAV_FILENAME and returns the image XC. Depending on the initial compressed image, XC can be a 2-D array containing either an indexed image or a 3-D array of uint8 containing a truecolor image.

XC = wcompress('u',SAV_FILENAME,'plot') plots the uncompressed image.

```
XC = wcompress('u',SAV_FILENAME,'step') shows the step-by-step
uncompression, only for PCSM methods.
```


## Examples

```
% Example 1: Compression and uncompression using
```

% Example 1: Compression and uncompression using
% basic parameters.
% basic parameters.
%
%
% This example demonstrates first how to compress the jpeg
% This example demonstrates first how to compress the jpeg
% image arms.jpg using the 'stw' compression method and
% image arms.jpg using the 'stw' compression method and
% save it to the file: 'comp_arms.wtc'.
% save it to the file: 'comp_arms.wtc'.
wcompress('c','arms.jpg','comp_arms.wtc','stw');
wcompress('c','arms.jpg','comp_arms.wtc','stw');
% Then, it shows how to load the stored image from
% Then, it shows how to load the stored image from
% the file 'comp_arms.wtc' and to display the step by
% the file 'comp_arms.wtc' and to display the step by
% step uncompression leading to the final image below.
% step uncompression leading to the final image below.
wcompress('u','comp_arms.wtc','step');

```
wcompress('u','comp_arms.wtc','step');
```

Compressed Image

\% Example 2: Compression and uncompression using
\% advanced parameters.
\%
\% This example demonstrates how to compress a jpeg
\% image using the 'aswdr' compression method and
\% save it to the file: 'woodstatue.wtc'.
\% During the compression process 3 parameters are used:
\% - Conversion color (cc) set to Karhunen-Loeve transform 'klt'
\% - Maximum number of loops (maxloop) set to 11
\% - Plot type (plotpar) set to step by step display
\% By the way two performance indicators are displayed:
\% the compression ratio (cr) and the bit-per-pixel ratio (bpp).

```
[cr,bpp] = wcompress('c','woodstatue.jpg','woodstatue.wtc', ...
 'aswdr','cc','klt','maxloop',11,'plotpar','step')
cr =
 3.0701
bpp =
 0.7368
```

Compressed Image: Loop 5


Compressed Image: Loop 8


\% Then, it shows how to load the stored image from the \% file 'woodstatue.wtc' and to display the step by step \% uncompression process.
wcompress('u','woodstatue.wtc','step');


```
load mask;
[cr,bpp] = wcompress('c',X,'mask.wtc','spint','maxloop',12)
cr =
 2.8336
bpp =
 0.2267
% Then, it shows how to load the stored image from the file
% 'mask.wtc', uncompress it and delete the file 'mask.wtc'.
Xc = wcompress('u','mask.wtc');
delete('mask.wtc')
% The orginal and compressed images are displayed.
colormap(pink(255))
subplot(1,2,1); image(X); title('Original image')
axis square
subplot(1,2,2); image(Xc); title('Compressed image')
axis square
```




```
% Finally the MSE and the PSNR are computed.
D = abs(X-Xc).^2;
mse = sum(D(:))/numel(X)
mse =
 33.6564
psnr = 10*log10(255*255/mse)
psnr =
 32.8601
% Example 4: Compression and uncompression of a truecolor image
% and computed MSE and PSNR error values.
% Compression parameters are the same as those used for example 3,
% but using the 'spiht_3d' method give better performance yet.
X = imread('wpeppers.jpg');
[cr,bpp] = wcompress('c',X,'wpeppers.wtc','spiht','maxloop',12)
cr =
 1.6527
bpp =
 0.3966
Xc = wcompress('u','wpeppers.wtc');
delete('wpeppers.wtc')
subplot(1,2,1); image(X); title('Original image'), axis square
subplot(1,2,2); image(Xc); title('Compressed image'), axis square
```



D = abs(double(X)-double(Xc)).^2;
D = abs(double(X)-double(Xc)).^2;
mse $=\operatorname{sum}(\mathrm{D}(:)) /$ numel(X)
mse =
26.7808
psnr = 10*log10(255*255/mse)
psnr = 10*log10(255*255/mse)
psnr =
33.8526

## References

Christophe, E., C. Mailhes, P. Duhamel (2006), "Adaptation of zerotrees using signed binary digit representations for 3 dimensional image coding," EURASIP Journal on Image and Video Processing, 2007, to appear in the special issue on Wavelets in Source Coding, Communications, and Networks, Paper ID 54679.

Misiti, M., Y. Misiti, G. Oppenheim, J.-M. Poggi (2007), Wavelets and their applications, ISTE DSP Series.

Said A., W.A. Pearlman (1996), "A new, fast, and efficient image codec based on set partitioning in hierarchical trees," IEEE Trans. on Circuits and Systems for Video Technology, Vol. 6, No. 3, pp. 243-250.

Shapiro J.M. (1993), "Embedded image coding using zerotrees of wavelet coefficients",P IEEE Trans. Signal Proc., Vol. 41, No. 12, pp. 3445-3462.

Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge Press.

Walker J.S. (1999), "Wavelet-Based Image Compression," University of Wisconsin, Eau Claire, Wisconsin, USA, , Sub-chapter of CRC Press book: Transform and Data Compression. A Primer on Wavelets and Their Scientific Applications.

[^10]
## Purpose

## Syntax

## Description

## Examples

Thresholds for wavelet 1-D using Birgé-Massart strategy
[THR,NKEEP] = wdcbm(C,L,ALPHA,M)
wdcbm(C,L,ALPHA)
wdcbm(C,L,ALPHA,L(1))
[THR,NKEEP] = wdcbm(C,L,ALPHA,M) returns level-dependent thresholds THR and numbers of coefficients to be kept NKEEP, for de-noising or compression. THR is obtained using a wavelet coefficients selection rule based on the Birgé-Massart strategy.
[ $\mathrm{C}, \mathrm{L}$ ] is the wavelet decomposition structure of the signal to be de-noised or compressed, at level $j=$ length(L)-2. ALPHA and M must be real numbers greater than 1.

THR is a vector of length $j$; THR(i) contains the threshold for level i.
NKEEP is a vector of length $j$; NKEEP (i) contains the number of coefficients to be kept at level i.
$\mathrm{j}, \mathrm{M}$ and ALPHA define the strategy:

- At level $\mathrm{j}+1$ (and coarser levels), everything is kept.
- For level i from 1 to j , the $\mathrm{n}_{\mathrm{i}}$ largest coefficients are kept with $n_{i}=M \quad(j+2-i)^{\text {ALPHA }}$.
Typically ALPHA $=1.5$ for compression and ALPHA $=3$ for de-noising.
A default value for $M$ is $M=L(1)$, the number of the coarsest approximation coefficients, since the previous formula leads for $\mathrm{i}=\mathrm{j}+1$, to $n_{j+1}=M=L(1)$. Recommended values for $M$ are from $L(1)$ to $2^{*} L(1)$.
wdcbm( $C, L, A L P H A)$ is equivalent to wdcbm ( $C, L, A L P H A, L(1))$.

```
% Load electrical signal and select a part of it.
load leleccum; indx = 2600:3100;
x = leleccum(indx);
% Perform a wavelet decomposition of the signal
% at level 5 using db3.
```

```
wname = 'db3'; lev = 5;
[c,l] = wavedec(x,lev,wname);
% Use wdcbm for selecting level dependent thresholds
% for signal compression using the adviced parameters.
alpha = 1.5; m = l(1);
[thr,nkeep] = wdcbm(c,l,alpha,m)
thr =
 19.5569 17.1415 20.2599 42.8959 15.0049
nkeep =
 1
% Use wdencmp for compressing the signal using the above
% thresholds with hard thresholding.
[xd,cxd,lxd,perf0,perfl2] = ...
 wdencmp('lvd',c,l,wname,lev,thr,'h');
% Plot original and compressed signals.
subplot(211), plot(indx,x), title('Original signal');
subplot(212), plot(indx,xd), title('Compressed signal');
xlab1 = ['2-norm rec.: ',num2str(perfl2)];
xlab2 = [' % -- zero cfs: ',num2str(perf0), ' %'];
xlabel([xlab1 xlab2]);
```



References Birgé, L.; P. Massart (1997), "From model selection to adaptive estimation," in D. Pollard (ed), Festchrift for L. Le Cam, Springer, pp. 55-88.

See Also wden | wdencmp | wpdencmp

Purpose
Syntax

Description

## Examples

Thresholds for wavelet 2-D using Birgé-Massart strategy
[THR,NKEEP] = wdcbm2(C,S,ALPHA, M)
wdcbm2(C,S,ALPHA)
wdcbm2(C,S,ALPHA, prod(S(1,:)))
[THR,NKEEP] = wdcbm2(C,S,ALPHA, M) returns level-dependent thresholds THR and numbers of coefficients to be kept NKEEP, for de-noising or compression. THR is obtained using a wavelet coefficients selection rule based on the Birgé-Massart strategy.
$[C, S]$ is the wavelet decomposition structure of the image to be de-noised or compressed, at level $\mathrm{j}=\operatorname{size}(\mathrm{S}, 1)-2$.
ALPHA and $M$ must be real numbers greater than 1 .
THR is a matrix 3 by j ; THR (: , i) contains the level dependent thresholds in the three orientations: horizontal, diagonal, and vertical, for level i.
NKEEP is a vector of length $j$; NKEEP (i) contains the number of coefficients to be kept at level i.
$j, M$ and ALPHA define the strategy:

- At level j+1 (and coarser levels), everything is kept.
- For level i from 1 to $j$, the $n_{i}$ largest coefficients are kept with $n_{i}=M \quad(j+2-i)^{\text {ALPHA }}$.
Typically ALPHA $=1.5$ for compression and ALPHA $=3$ for de-noising.
A default value for $M$ is $M=\operatorname{prod}(S(1,:))$, the length of the coarsest approximation coefficients, since the previous formula leads for $\mathrm{i}=\mathrm{j}+1$, to $n_{j+1}=M=\operatorname{prod}(S(1,:))$.
Recommended values for $M$ are from $\operatorname{prod}(S(1,:))$ to $6 * \operatorname{prod}(S(1,:))$.
wdcbm2 ( $\mathrm{C}, \mathrm{S}, \mathrm{ALPHA}$ ) is equivalent to
wdcbm2(C,S,ALPHA, prod(S(1,:))).

```
% Load original image.
load detfingr;
```

```
nbc = size(map,1);
% Perform a wavelet decomposition of the image
% at level 3 using sym4.
wname = 'sym4'; lev = 3;
[c,s] = wavedec2(X,lev,wname);
% Use wdcbm2 for selecting level dependent thresholds
% for image compression using the adviced parameters.
alpha = 1.5; m = 2.7*prod(s(1,:));
[thr,nkeep] = wdcbm2(c,s,alpha,m)
thr =
 21.4814 46.8354 40.7907
 21.4814 46.8354 40.7907
 21.4814 46.8354 40.7907
nkeep =
 624
 961
1 7 6 5
% Use wdencmp for compressing the image using the above
% thresholds with hard thresholding.
[xd,cxd,sxd,perf0,perfl2] = ...
 wdencmp('lvd', c,s,wname,lev,thr,'h');
% Plot original and compressed images.
colormap(pink(nbc));
subplot(221), image(wcodemat(X,nbc)),
title('Original image')
subplot(222), image(wcodemat(xd,nbc)),
title('Compressed image')
xlab1 = ['2-norm rec.: ',num2str(perfl2)];
xlab2 = [' % -- zero cfs: ',num2str(perf0), ' %'];
xlabel([xlab1 xlab2]);
```


## wdcbm2



See Also wdencmp | wpdencmp

## Purpose

Multisignal 1-D decomposition energy distribution

## Syntax

[E,PEC,PECFS] = wdecenergy(DEC)
[E,PEC,PECFS,IDXSORT,LONGS] = wdecenergy(DEC,'sort')
[E,PEC,PECFS] = wdecenergy(DEC,OPTSORT,IDXSIG)
[E,PEC,PECFS,IDXSORT,LONGS] = wdecenergy(DEC,OPTSORT,IDXSIG)

## Description

[E,PEC, PECFS] = wdecenergy (DEC) computes the vector E that
contains the energy (L2-Norm) of each decomposed signal, the matrix PEC that contains the percentage of energy for each wavelet component (approximation and details) of each signal, and the matrix PECFS that contains the percentage of energy for each coefficient.

- $\mathrm{E}(\mathrm{i})$ is the energy (L2-norm) of the ith signal.
- PEC(i,1) is the percentage of energy for the approximation of level MAXLEV = DEC.level of the ith signal.
- $\operatorname{PEC}(\mathrm{i}, \mathrm{j}), \mathrm{j}=2, \ldots, \mathrm{MAXLEV}+1$ is the percentage of energy for the detail of level (MAXLEV+1-j) of the ith signal.
- PECFS( $\mathrm{i}, \mathrm{j}$ ), is the percentage of energy for jth coefficients of the ith signal.
[E,PEC, PECFS, IDXSORT, LONGS] = wdecenergy(DEC, 'sort') returns PECFS sorted (by row) in ascending order and an index vector IDXSORT.
- Replacing 'sort' by 'ascend' returns the same result.
- Replacing 'sort' by 'descend' returns PECFS sorted in descending order.

LONGS is a vector containing the lengths of each family of coefficients.
[E,PEC, PECFS] = wdecenergy(DEC,OPTSORT, IDXSIG) returns the values for the signals whose indices are given by the IDXSIG vector.
[E,PEC,PECFS, IDXSORT,LONGS] =
wdecenergy (DEC, OPTSORT, IDXSIG) returns the values for the signals whose indices are given by the IDXSIG vector, the index vector IDXSORT, and LONGS, which is a vector containing the
lengths of each family of coefficients. Valid values for OPTSORT are 'none', 'sort', 'ascend', 'descend'.

```
Examples %Load original 1D-multisignal.
load thinker
% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r',X,2,'db2');
% Compute the energy distribution.
[E,PEC,PECFS] = wdecenergy(dec);
% Display the total energy and the distribution of energy
% for each wavelet component (A2, D2, D1).
E31 = E(31)
perA2D2D1 = PEC(31,:)
% Compare the coefficient energy distribution
% for signal 1 and signal 31.
PECFS_1 = PECFS(1,:);
PECFS_31 = PECFS(31,:);
figure;
plot(PECFS_1,'--r','linewidth',2); hold on
plot(PECFS_31,'b','linewidth',2);
grid; set(gca,'Xlim',[1,size(PECFS,2)])
title('PECFS1 dashed line and PECFS31 solid line')
```



See Also
mdwtdec | mdwtrec

Purpose
Automatic 1-D de-noising
Syntax
[XD,CXD,LXD] = wden(X,TPTR,SORH,SCAL,N,'wname')
[XD,CXD,LXD] = wden(C,L,TPTR,SORH,SCAL,N,'wname')
wden is a one-dimensional de-noising function.
wden performs an automatic de-noising process of a one-dimensional signal using wavelets.
[XD,CXD,LXD] = wden(X,TPTR,SORH,SCAL,N,'wname') returns a de-noised version XD of input signal $X$ obtained by thresholding the wavelet coefficients.

Additional output arguments [CXD, LXD] are the wavelet decomposition structure (see wavedec for more information) of the de-noised signal XD.

TPTR string contains the threshold selection rule:

- 'rigrsure ' uses the principle of Stein's Unbiased Risk.
- 'heursure' is an heuristic variant of the first option.
- 'sqtwolog' for the universal threshold $\sqrt{2 \ln (\bullet)}$
- 'minimaxi' for minimax thresholding (see thselect for more information)

SORH ('s' or ' h ') is for soft or hard thresholding (see wthresh for more information).

SCAL defines multiplicative threshold rescaling:
'one ' for no rescaling
'sln' for rescaling using a single estimation of level noise based on first-level coefficients
'mln' for rescaling done using level-dependent estimation of level noise
Wavelet decomposition is performed at level $N$ and 'wname' is a string containing the name of the desired orthogonal wavelet (see wmaxlev and wfilters for more information).
$[X D, C X D, L X D]=$ wden (C,L,TPTR,SORH,SCAL, N, 'wname') returns the same output arguments, using the same options as above, but obtained directly from the input wavelet decomposition structure [C, L] of the signal to be de-noised, at level $N$ and using 'wname' orthogonal wavelet.
The underlying model for the noisy signal is basically of the following form:

$$
s(n)=f(n)+\sigma e(n)
$$

where time $n$ is equally spaced.
In the simplest model, suppose that $e(n)$ is a Gaussian white noise $N(0,1)$ and the noise level $\sigma$ a is supposed to be equal to 1 .

The de-noising objective is to suppress the noise part of the signal $s$ and to recover $f$.

The de-noising procedure proceeds in three steps:
1 Decomposition. Choose a wavelet, and choose a level N. Compute the wavelet decomposition of the signal s at level N .

2 Detail coefficients thresholding. For each level from 1 to N, select a threshold and apply soft thresholding to the detail coefficients.

3 Reconstruction. Compute wavelet reconstruction based on the original approximation coefficients of level N and the modified detail coefficients of levels from 1 to N .

More details about threshold selection rules are in "Denoising and Nonparametric Function Estimation", in the User's Guide, and in the help of the thselect function. Let us point out that

- The detail coefficients vector is the superposition of the coefficients of $f$ and the coefficients of $e$, and that the decomposition of $e$ leads to detail coefficients that are standard Gaussian white noises.
- Minimax and SURE threshold selection rules are more conservative and are more convenient when small details of function $f$ lie in the
noise range. The two other rules remove the noise more efficiently. The option 'heursure' is a compromise.

In practice, the basic model cannot be used directly. This section examines the options available, to deal with model deviations. The remaining parameter scal has to be specified. It corresponds to threshold rescaling methods.

- Option scal = 'one ' corresponds to the basic model.
- In general, you can ignore the noise level that must be estimated. The detail coefficients $C D_{1}$ (the finest scale) are essentially noise coefficients with standard deviation equal to $\sigma$. The median absolute deviation of the coefficients is a robust estimate of $\sigma$. The use of a robust estimate is crucial because if level 1 coefficients contain $f$ details, these details are concentrated in few coefficients to avoid signal end effects, which are pure artifacts due to computations on the edges.
- The option scal = 'sln' handles threshold rescaling using a single estimation of level noise based on the first-level coefficients.
- When you suspect a nonwhite noise $e$, thresholds must be rescaled by a level-dependent estimation of the level noise. The same kind of strategy is used by estimating $\sigma_{l e v}$ level by level. This estimation is implemented in the file wnoisest, which handles the wavelet decomposition structure of the original signal $s$ directly.
- The option scal = 'mln' handles threshold rescaling using a level-dependent estimation of the level noise.

```
Examples % The current extension mode is zero-padding (see dwtmode).
% Set signal to noise ratio and set rand seed.
snr = 3; init = 2055615866;
% Generate original signal and a noisy version adding
% a standard Gaussian white noise.
[xref,x] = wnoise(3,11,snr,init);
```

```
% De-noise noisy signal using soft heuristic SURE thresholding
% and scaled noise option, on detail coefficients obtained
% from the decomposition of x, at level 5 by sym8 wavelet.
lev = 5;
xd = wden(x,'heursure','s','one',lev,'sym8');
% Plot signals.
subplot(611), plot(xref), axis([1 2048 -10 10]);
title('Original signal');
subplot(612), plot(x), axis([1 2048 -10 10]);
title(['Noisy signal - Signal to noise ratio = ',...
num2str(fix(snr))]);
subplot(613), plot(xd), axis([1 2048 -10 10]);
title('De-noised signal - heuristic SURE');
% De-noise noisy signal using soft SURE thresholding
xd = wden(x,'heursure','s','one',lev,'sym8');
% Plot signal.
subplot(614), plot(xd), axis([1 2048 -10 10]);
title('De-noised signal - SURE');
% De-noise noisy signal using fixed form threshold with
% a single level estimation of noise standard deviation.
xd = wden(x,'sqtwolog','s','sln',lev,'sym8');
% Plot signal.
subplot(615), plot(xd), axis([1 2048 -10 10]);
title('De-noised signal - Fixed form threshold');
% De-noise noisy signal using minimax threshold with
% a multiple level estimation of noise standard deviation.
xd = wden(x,'minimaxi','s','sln',lev,'sym8');
% Plot signal.
subplot(616), plot(xd), axis([1 2048 -10 10]);
title('De-noised signal - Minimax');
```

```
% If many trials are necessary, it is better to perform
% decomposition once and threshold it many times:
% decomposition.
[c,l] = wavedec(x,lev,'sym8');
% threshold the decomposition structure [c,l].
xd = wden(c,l,'minimaxi','s','sln',lev,'sym8');
% Editing some graphical properties,
% the following figure is generated.
```

Original signal


Noisy signal - Signal to noise ratio $=3$




De-noised signal - Fixed form threshold

References Antoniadis, A.; G. Oppenheim, Eds. (1995), Wavelets and statistics, 103, Lecture Notes in Statistics, Springer Verlag.See Also
Donoho, D.L. (1993), "Progress in wavelet analysis and WVD: a ten minute tour," in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, pp. 109-128. Frontières Ed.
Donoho, D.L.; I.M. Johnstone (1994), "Ideal spatial adaptation by wavelet shrinkage," Biometrika, Vol. 81, pp. 425-455.
Donoho, D.L. (1995), "De-noising by soft-thresholding," IEEE Trans. on Inf. Theory, 42 3, pp. 613-627.
Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), "Wavelet shrinkage: asymptotia," Jour. Roy. Stat. Soc., series B, Vol. 57, No. 2, pp. 301-369.
See Also thselect | wavedec | wdencmp | wfilters | wthresh

## Purpose <br> De-noising or compression

```
Syntax
[XC,CXC,LXC,PERFO,PERFL2] = wdencmp('gbl',X,'wname',N,THR,
 SORH, KEEPAPP)
wdencmp('gbl', C,L, 'wname', N, THR, SORH, KEEPAPP)
[XC,CXC,LXC,PERFO, PERFL2] = wdencmp('lvd',X,'wname',N,THR,
 SORH)
[XC,CXC,LXC, PERFO,PERFL2] =
wdencmp('lvd',C,L,'wname',N,THR,
 SORH)
[XC,CXC,LXC,PERFO,PERFL2] = wdencmp('lvd',X,'wname',N,THR,
 SORH)
[XC,CXC,LXC,PERFO,PERFL2] =
wdencmp('lvd',C,L,'wname',N,THR,
 SORH)
```


## Description

wdencmp is a one- or two-dimensional de-noising and compression-oriented function.
wdencmp performs a de-noising or compression process of a signal or an image, using wavelets.
[XC,CXC,LXC,PERFO,PERFL2] = wdencmp('gbl', X, 'wname', $\mathrm{N}, \mathrm{THR}$, SORH, KEEPAPP) returns a de-noised or compressed version XC of input signal X (one- or two-dimensional) obtained by wavelet coefficients thresholding using global positive threshold THR.

Additional output arguments [CXC, LXC] are the wavelet decomposition structure of XC (see wavedec or wavedec2 for more information). PERF0 and PERFL2 are $L^{2}$-norm recovery and compression score in percentage.

PERFL2 $=100$ * (vector-norm of CXC / vector-norm of C) ${ }^{2}$ if [C,L] denotes the wavelet decomposition structure of $X$.

If X is a one-dimensional signal and 'wname' an orthogonal wavelet, PERFL2 is reduced to

$$
\frac{100\|X C\|^{2}}{\|X\|^{2}}
$$

Wavelet decomposition is performed at level N and 'wname' is a string containing wavelet name (see wmaxlev and wfilters for more information). SORH ('s' or ' h ') is for soft or hard thresholding (see wthresh for more information). If KEEPAPP $=1$, approximation coefficients cannot be thresholded, otherwise it is possible.
wdencmp('gbl', C, L, 'wname' , N, THR, SORH, KEEPAPP) has the same output arguments, using the same options as above, but obtained directly from the input wavelet decomposition structure [C,L] of the signal to be de-noised or compressed, at level N and using 'wname' wavelet.

For the one-dimensional case and 'lvd' option, [XC,CXC,LXC,PERFO,PERFL2] = wdencmp('lvd', X, 'wname', N, THR, SORH) or [XC,CXC,LXC,PERFO,PERFL2] = wdencmp('lvd', C,L,'wname',N,THR,SORH) have the same output arguments, using the same options as above, but allowing level-dependent thresholds contained in vector THR (THR must be of length $N$ ). In addition, the approximation is kept. Note that, with respect to wden (automatic de-noising), wdencmp allows more flexibility and you can implement your own de-noising strategy.

For the two-dimensional case and 'lvd' option, [XC,CXC,LXC,PERFO,PERFL2] = wdencmp('lvd', X,'wname', N, THR, SORH) or [XC,CXC,LXC,PERFO, PERFL2] = wdencmp('lvd', C,L,'wname',N,THR,SORH).

THR must be a matrix 3 by N containing the level-dependent thresholds in the three orientations, horizontal, diagonal, and vertical.

Like denoising, the compression procedure contains three steps:
1 Decomposition.

2 Detail coefficient thresholding. For each level from 1 to N, a threshold is selected and hard thresholding is applied to the detail coefficients.

3 Reconstruction.
The difference with the denoising procedure is found in step 2 .

## Examples Denoise Image Using Default Global Threshold

Denoise an image in additive white Gaussian noise using the Donoho-Johnstone universal threshold.

Load the image and add white Gaussian noise.

```
load sinsin;
Y = X + 18*randn(size(X));
```

Use ddencmp to obtain the threshold and denoise the image. Plot the original image, noisy image, and denoised result.

```
[thr,sorh,keepapp] = ddencmp('den','wv',Y);
xd = wdencmp('gbl',Y,'sym4',2,thr,sorh,keepapp);
subplot(221)
imagesc(X); title('Original Image');
subplot(222);
imagesc(Y); title('Noisy Image');
subplot(223)
imagesc(xd); title('Denoised Image');
```


## Denoise 1-D Signal Using Default Global Threshold

Denoise 1-D electricity consumption data using the Donoho-Johnstone global threshold.

Load the signal and select a segment for denoising.

```
load leleccum; indx = 2600:3100;
x = leleccum(indx);
```

Use ddencmp to determine the default global threshold and denoise the signal. Plot the original and denoised signals.

```
[thr,sorh,keepapp] = ddencmp('den','wv',x);
xd = wdencmp('gbl',x,'db3',2,thr,sorh,keepapp);
subplot(211)
plot(x); title('Original Signal');
subplot(212)
plot(xd); title('Denoised Signal');
```


## References

See Also

DeVore, R.A.; B. Jawerth, B.J. Lucier (1992), "Image compression through wavelet transform coding," IEEE Trans. on Inf. Theory, vol. 38, No 2, pp. 719-746.

Donoho, D.L. (1993), "Progress in wavelet analysis and WVD: a ten minute tour," in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, pp. 109-128. Frontières Ed.
Donoho, D.L.; I.M. Johnstone (1994), "Ideal spatial adaptation by wavelet shrinkage," Biometrika, vol. 81, pp. 425-455.
Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), "Wavelet shrinkage: asymptopia," Jour. Roy. Stat. Soc., series B, vol. 57 no. 2, pp. 301-369.

Donoho, D.L.; I.M. Johnstone, "Ideal de-noising in an orthonormal basis chosen from a library of bases," C.R.A.S. Paris, t. 319, Ser. I, pp. 1317-1322.

Donoho, D.L. (1995), "De-noising by soft-thresholding," IEEE Trans. on Inf. Theory, 41, 3, pp. 613-627.
ddencmp | wavedec | wavedec2 | wbmpen | wcompress | wdcbm2 | wden | wpdencmp | wthresh

## Purpose Energy for 1-D wavelet or wavelet packet decomposition

## Syntax <br> Description

[Ea,Ed] = wenergy(C,L)
E = wenergy( $T$ )

## Examples

```
% Example 1: 1-D wavelet decomposition
%-------------------------------------
load noisbump
[C,L] = wavedec(noisbump,4,'sym4');
[Ea,Ed] = wenergy(C,L)
Ea =
 88.2860
Ed =
 2.1560 1.2286 1.4664 6.8630
% Example 2: 1-D wavelet packet decomposition
%--
load noisbump
T = wpdec(noisbump,3,'sym4');
E = wenergy(T)
E =
```

$\begin{array}{lllllll}95.0329 & 1.4664 & 0.6100 & 0.6408 & 0.5935 & 0.5445 & 0.5154 \\ 0.5965 & & & & \end{array}$

Purpose Energy for 2-D wavelet decomposition

```
Syntax
[Ea,Eh,Ev,Ed] = wenergy2(C,S)
[Ea,EDetail] = wenergy2(C,S)
```

Description
For a two-dimensional wavelet decomposition [C,S] (see wavedec2 for details), [Ea,Eh,Ev,Ed] = wenergy2(C,S) returns Ea, which is the percentage of energy corresponding to the approximation, and vectors Eh, Ev, Ed, which contain the percentages of energy corresponding to the horizontal, vertical, and diagonal details, respectively.
[Ea,EDetail] = wenergy2(C,S) returns Ea, and EDetail, which is the sum of vectors Eh, Ev, and Ed.

## Examples

```
load detail
[C,S] = wavedec2(X,2,'sym4');
[Ea,Eh,Ev,Ed] = wenergy2(C,S)
Ea =
 89.3520
Eh =
 1.8748 2.7360
Ev =
 1.5860 2.6042
Ed =
 0.7539 1.0932
[Ea,EDetails] = wenergy2(C,S)
Ea =
 89.3520
EDetails =
 4.2147 6.4334
```


## Purpose Entropy (wavelet packet)

Syntax
$\mathrm{E}=$ wentropy $(\mathrm{X}, \mathrm{T}, \mathrm{P})$
$\mathrm{E}=$ wentropy $(\mathrm{X}, T)$
$\mathrm{E}=$ wentropy $(\mathrm{X}, \mathrm{T}, 0)$
Description
$\mathrm{E}=$ wentropy $(\mathrm{X}, T, \mathrm{P})$ returns the entropy E of the vector or matrix input $X$. In both cases, output $E$ is a real number.
$E=$ wentropy $(X, T)$ is equivalent to $E=$ wentropy $(X, T, 0)$.
$T$ is a string containing the type of entropy and $P$ is an optional parameter depending on the value of $T$.

| Entropy Type <br> Name (T) | Parameter (P) | Comments |
| :--- | :--- | :--- |
| 'shannon' |  | P is not used. |
| 'log energy ' |  | P is not used. |
| 'threshold ' | 0 | P |
| P is the threshold. |  |  |
| 'sure' | 0 | P |
| P is the threshold. |  |  |
| 'norm' | $1 \quad \mathrm{P}$ | P is the power. |
| 'user' | string | P is a string containing the <br> file name of your own entropy <br> function, with a single input X. |
| FunName | No constraints <br> on P | FunName is any other string <br> except those used for the <br> previous Entropy Type Names <br> listed above. <br> FunName contains the file name <br> of your own entropy function, <br> with X as input and P as <br> additional parameter to your <br> entropy function. |

Note The 'user' option is historical and still kept for compatibility, but it is obsoleted by the last option described in the table above. The FunName option do the same as the 'user' option and in addition gives the possibility to pass a parameter to your own entropy function.

Functionals verifying an additive-type property are well suited for efficient searching of binary-tree structures and the fundamental splitting property of the wavelet packets decomposition. Classical entropy-based criteria match these conditions and describe information-related properties for an accurate representation of a given signal. Entropy is a common concept in many fields, mainly in signal processing. The following example lists different entropy criteria. Many others are available and can be easily integrated. In the following expressions, $s$ is the signal and $\left(s_{i}\right)_{i}$ the coefficients of $s$ in an orthonormal basis.

The entropy E must be an additive cost function such that $E(0)=0$ and

$$
E(s)=\sum_{i} E\left(s_{i}\right)
$$

- The (nonnormalized) Shannon entropy.
$E 1\left(s_{i}\right)=s_{i}{ }^{2} \log \left(s_{i}{ }^{2}\right)$ so $E 1(s)=-\sum_{i} s_{i}{ }^{2} \log \left(s_{i}{ }^{2}\right)$
with the convention $0 \log (0)=0$.
- The concentration in $l^{p}$ norm entropy with $1 \leq p$.

$$
E 2\left(s_{i}\right)=\left|s_{i}\right|^{p} \text { so } E 2(s)=\sum_{i}\left|s_{i}\right|^{p}=\|s\|_{p}^{p}
$$

- The "log energy" entropy.

$$
E 3\left(s_{i}\right)=\log \left(s_{i}^{2}\right) \text { so } \quad E 3(s)=\sum_{i} \log \left(s_{i}^{2}\right)
$$

with the convention $\log (0)=0$.

- The threshold entropy.
$E 4\left(s_{i}\right)=1$ if $\left|s_{i}\right|>p$ and 0 elsewhere so $E 4(s)=\#\left\{i\right.$ such that $\left|s_{i}\right|$
$>p\}$ is the number of time instants when the signal is greater than a threshold $p$.
- The "SURE" entropy.
$\mathrm{E} 5(\mathrm{~s})=\mathrm{n}-\#\left\{\right.$ i such that $\left.\left|s_{i}\right| \leq p\right\}+\sum_{i} \min \left(s_{i}{ }^{2}, p^{2}\right)$

For more information, see the section "Wavelet Packets for Compression and De-Noising" of the User's Guide.

```
Examples
\% The current extension mode is zero-padding (see dwtmode).
\% Generate initial signal.
\(x=\operatorname{randn}(1,200)\);
\% Compute Shannon entropy of \(x\).
e = wentropy (x,'shannon')
e =
 -142.7607
\% Compute log energy entropy of \(x\).
e = wentropy(x,'log energy')
e =
 -281. 8975
```

```
% Compute threshold entropy of x
% with threshold equal to 0.2.
e = wentropy(x,'threshold',0.2)
e =
 1 6 2
% Compute Sure entropy of x
% with threshold equal to 3.
e = wentropy(x,'sure',3)
e =
 -0.6575
% Compute norm entropy of x with power equal to 1.1.
e = wentropy(x,'norm',1.1)
e =
 160.1583
% Compute user entropy of x with a user defined
% function: userent for example.
% This function must be a code file, with first line
% of the following form:
%
% function e = userent(x)
%
% where x is a vector and e is a real number.
% Then a new entropy is defined and can be used typing:
%
% e = wentropy(x,'user','userent')
%
% or more directly
%
% e = wentropy(x,'userent')
References Coifman, R.R.; M.V. Wickerhauser (1992), "Entropy-based Algorithms for best basis selection," IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713-718.
```

Donoho, D.L.; I.M. Johnstone, "Ideal de-noising in an orthonormal basis chosen from a library of bases," C.R.A.S. Paris, Ser. I, t. 319, pp. 1317-1322.

Extend vector or matrix

## Syntax

Description The valid extension types (TYPE) are listed in the table below.

| TYPE | Description |
| :--- | :--- |
| 1, '1 ', '1d' or '1D' | 1-D extension |
| $2, ~ ' 2$ ', '2d ' or '2D' | 2-D extension |
| 'ar' or 'addrow' | Add rows |
| 'ac' or 'addcol' | Add columns |

The valid extension modes (MODE) are listed in the table below.

| MODE | Description |
| :--- | :--- |
| 'zpd' | Zero extension |
| 'sp0' | Smooth extension of order 0 |
| 'spd' (or 'sp1') | Smooth extension of order 1 |
| 'sym' or 'symh ' | Symmetric-padding (half-point): boundary <br> value symmetric replication |
| 'symw' | Symmetric-padding (whole-point): boundary <br> value symmetric replication |
| 'asym' or 'asymn' | Antisymmetric-padding (half-point): <br> boundary value antisymmetric replication |
| 'asymw' | Antisymmetric-padding (whole-point): <br> boundary value antisymmetric replication |


| MODE | Description |
| :--- | :--- |
| 'ppd' | Periodized extension (1) |
| 'per' | Periodized extension (2): <br> If the signal length is odd, wextend adds <br> an extra sample, equal to the last value, <br> on the right and performs extension using <br> the 'ppd' mode. Otherwise, 'per' reduces <br> to 'ppd '. The same kind of rule stands for <br> images. |
| With TYPE $=\left\{1, \quad 1 '^{\prime}, \quad 1 d^{\prime}\right.$ or '1D' $\}:$ |  |

- LOC = 'l' (or 'u') for left (or up) extension.
- LOC = 'r' (or 'd') for right (or down) extension.
- LOC = 'b' for extension on both sides.
- LOC = ' $n$ ' null extension.
- The default is LOC = 'b'.
- $L$ is the length of the extension.

With TYPE = \{'ar', 'addrow' $\}$ :

- LOC is a 1D extension location.
- The default is LOC = 'b'.
- $L$ is the number of rows to add.

With TYPE $=\left\{{ }^{\prime} \mathrm{ac}^{\prime}\right.$, 'addcol' $\}$ :

- LOC is a 1 D extension location.
- The default is LOC = 'b'.
- L is the number of columns to add.

With TYPE $=\{2, \quad$ '2', '2d' or '2D' $\}:$

- LOC = [LOCROW, LOCCOL] where LOCROW and LOCCOL are 1D extension locations or ' n ' (none).
- The default is LOC = 'bb'.
- $L=[$ LROW, LCOL] where LROW is the number of rows to add and LCOL is the number of columns to add.

For more information on symmetric extension modes see "References".
Examples

```
% Original signal.
x = [llll
x =
 1 2
% 1-D extension length.
l = 2;
% Zero-padding extensions 1-D.
xextzpd1 = wextend('1','zpd',x,l)
xextzpd1 =
 0
xextzpd2 = wextend('1D','zpd',x,l,'b')
xextzpd2 =
```

    \(\begin{array}{lllllll}0 & 0 & 1 & 2 & 3 & 0 & 0\end{array}\)
    \% Symmetric extension 1-D.
xextsym = wextend('1D','sym',x,l)
xextsym =
$\begin{array}{lllllll}2 & 1 & 1 & 2 & 3 & 3 & 2\end{array}$

```
% Periodic extension 1-D.
xextper = wextend('1D','per',x,l)
xextper =
 3
% Original image.
X = [1 2 3;4 5 6]
X =
 1
```

\% 2-D extension length.
$1=2$;
\% Zero-padding extension 2-D.
Xextzpd = wextend(2,'zpd',X,1)
Xextzpd =

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 2 | 3 | 0 | 0 |
| 0 | 0 | 4 | 5 | 6 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

\% Symmetric extension 2-D.
Xextsym $=$ wextend('2D','sym', $\mathrm{X}, \mathrm{l}$ )

| Xextsym $=$ |  |  |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 4 | 4 | 5 | 6 | 6 | 5 |
| 2 | 1 | 1 | 2 | 3 | 3 | 2 |
| 2 | 1 | 1 | 2 | 3 | 3 | 2 |
| 5 | 4 | 4 | 5 | 6 | 6 | 5 |


| 5 | 4 | 4 | 5 | 6 | 6 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 1 | 2 | 3 | 3 | 2 |

[^11]
## Purpose Fractional Brownian motion synthesis

Syntax<br>\section*{Description}

FBM $=\mathrm{wfbm}(\mathrm{H}, \mathrm{L})$
FBM $=$ wfbm (H,L,'plot')
FBM $=\mathrm{wfbm}(\mathrm{H}, \mathrm{L}, \mathrm{NS}, \mathrm{W})$
FBM $=w f b m(H, L, W, N S)$
wfbm(H,L, 'plot', NS)
wfbm(H,L, 'plot', W)
wfbm(H,L,'plot', NS, W)
wfbm(H,L,'plot', W, NS)
FBM $=\mathrm{wfbm}(\mathrm{H}, \mathrm{L})$ returns a fractional Brownian motion signal FBM of the Hurst parameter $H(0<H<1)$ and length $L$, following the algorithm proposed by Abry and Sellan.

FBM $=$ wfbm( $\mathrm{H}, \mathrm{L}$, 'plot') generates and plots the FBM signal.
FBM $=\mathrm{wfbm}(\mathrm{H}, \mathrm{L}, \mathrm{NS}, \mathrm{W})$ or FBM $=\mathrm{wfbm}(\mathrm{H}, \mathrm{L}, \mathrm{W}, \mathrm{NS})$ returns the FBM using NS reconstruction steps and the sufficiently regular orthogonal wavelet W.
wfbm(H,L,'plot',NS) or wfbm(H,L,'plot',W) or wfbm(H,L,'plot',NS,W) or wfbm(H,L,'plot', W,NS) generates and plots the FBM signal.
wfbm ( $\mathrm{H}, \mathrm{L}$ ) is equivalent to WFBM ( $\mathrm{H}, \mathrm{L}, 6, \mathrm{C}^{\prime} \mathrm{db} 10^{\prime}$ ).
wfbm ( $\mathrm{H}, \mathrm{L}, \mathrm{NS}$ ) is equivalent to $\mathrm{WFBM}\left(\mathrm{H}, \mathrm{L}, \mathrm{NS}, \mathrm{'db}^{\prime} \mathrm{O}^{\prime}\right)$.
wfbm ( $H, L, W$ ) is equivalent to $\operatorname{WFBM}(H, L, W, 6)$.
A fractional Brownian motion ( fBm ) is a continuous-time Gaussian process depending on the Hurst parameter $0<H<1$. It generalizes the ordinary Brownian motion corresponding to $\mathrm{H}=0.5$ and whose derivative is the white noise. The fBm is self-similar in distribution and the variance of the increments is given by
$\operatorname{Var}(f B m(t)-f B m(s))=v|t-s|^{\wedge}(2 H)$
where v is a positive constant.

```
Examples
H = 0.7;
\% Generate and plot wavelet-based fBm for \(\mathrm{H}=0.7\)
fBm07 = wfbm(H,lg,'plot');
\% The last step is equivalent to
\% Define wavelet and level of decomposition
\% w = ' db10'; ns = 6;
\% Generate
\% fBm07 = wfbm(H,lg,'plot',w,ns);
```

fBm07 clearly exhibits a stronger low-frequency component and has, locally, less irregular behavior.

## Algorithms

Starting from the expression of the fBm process as a fractional integral of the white noise process, the idea of the algorithm is to build a biorthogonal wavelet depending on a given orthogonal one and adapted to the parameter H .
Then the generated sample path is obtained by the reconstruction using the new wavelet starting from a wavelet decomposition at a given level designed as follows: details coefficients are independent random Gaussian realizations and approximation coefficients come from a fractional ARIMA process.

This method was first proposed by Meyer and Sellan and implementation issues were examined by Abry and Sellan.

Nevertheless, the samples generated following this original scheme exhibit too many high-frequency components. To circumvent this undesirable behavior Bardet et al. propose downsampling the obtained sample by a factor 10 .

Two internal parameters delta $=10$ (the downsampling factor) and a threshold prec = 1E-4, to evaluate series by truncated sums, can be modified by the user for extreme values of $H$.

A complete overview of long-range dependence process generators is available in Bardet et al.

\author{

## References

 <br> See Also wfbmesti}

## Purpose Parameter estimation of fractional Brownian motion

## Syntax

Description

Examples

HEST = wfbmesti(X)

HEST = wfbmesti $(X)$ returns a row vector HEST which contains three estimates of the fractal index $H$ of the signal $X$ supposed to come from a fractional Brownian motion of parameter $H$.

The two first estimates are based on second order discrete derivative, the second one is wavelet-based.

The third estimate is based on the linear regression in loglog plot, of the variance of detail versus level.

A fractional Brownian motion ( fBm ) is a continuous-time Gaussian process depending on the so-called Hurst parameter $0<H<1$. It generalizes the ordinary Brownian motion corresponding to $\mathrm{H}=0.5$ and whose derivative is the white noise. The fBm is self-similar in distribution and the variance of the increments is given by
$\operatorname{Var}(f B m(t)-f B m(s))=v|t-s|^{\wedge}(2 H)$
where $v$ is a positive constant.
This special form of the variance of the increments suggests various ways to estimate the parameter H . One can find in Bardet et al. a survey of such methods. The wfbmesti file provides three different estimates. The first one, due to Istas and Lang, is based on the discrete second-order derivative. The second one is a wavelet-based adaptation and has similar properties. The third one, proposed by Flandrin, estimates H using the slope of the loglog plot of the detail variance versus the level. A more recent extension can be found in Abry et al.

This example shows a statistical comparison of the three estimators by a short Monte-Carlo study.
\% Initialize the randn generator
\% Set parameter H to 0.6 and sample length

```
H = 0.6; lg = 10000;
% Generate 100 wavelet-based fBm realizations for H = 0.6
% and compute the three estimates for each of them
n = 100; Hest = zeros(n,3);
for i = 1:n
 fBm06 = wfbm(H,lg);
 Hest(i,:) = wfbmesti(fBm06);
end
% Compare empirical distributions
subplot(311), hist(Hest(:,1));
title('Discrete second derivative estimator DSOD')
subplot(312), hist(Hest(:,2));
title('Wavelet version of DSOD')
subplot(313), hist(Hest(:,3));
title('Wavelet details regression estimator')
xlabel('True value of the parameter H = 0.6')
```

For these experimental conditions, the two first methods give similar results with smaller dispersion than the third one. The third one is clearly slightly biased and has greater dispersion.
These experimental results depend on H and on the various experimental conditions. For a complete study, see Bardet et al.

## References

Abry, P.; P. Flandrin, M.S. Taqqu, D. Veitch (2003), "Self-similarity and long-range dependence through the wavelet lens," Theory and applications of long-range dependence, Birkhäuser, pp. 527-556.
Bardet, J.-M.; G. Lang, G. Oppenheim, A. Philippe, S. Stoev, M.S. Taqqu (2003), "Semi-parametric estimation of the long-range dependence parameter: a survey," Theory and applications of long-range dependence, Birkhäuser, pp. 557-577.

Flandrin, P. (1992), "Wavelet analysis and synthesis of fractional Brownian motion," IEEE Trans. on Inf. Th., 38, pp. 910-917.

Istas, J.; G. Lang (1994), "Quadratic variations and estimation of the local Hölder index of a Gaussian process," Ann. Inst. Poincaré, 33, pp. 407-436.

See Also wfbm

## Purpose

Syntax

Description

Wavelet filters

```
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname')
[F1,F2] = wfilters('wname','type')
```

[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname') computes four filters associated with the orthogonal or biorthogonal wavelet named in the string 'wname'.

The four output filters are

- Lo_D, the decomposition low-pass filter
- Hi_D, the decomposition high-pass filter
- Lo_R, the reconstruction low-pass filter
- Hi_R, the reconstruction high-pass filter

Available orthogonal or biorthogonal wavelet names 'wname ' are listed in the table below.

| Wavelet Families | Wavelets |
| :---: | :---: |
| Daubechies | 'db1' or 'haar ', 'db2', ... , 'db10', ..., 'db45' |
| Coiflets | 'coif1', ..., 'coif5' |
| Symlets | 'sym2', ..., 'sym8', ..., 'sym45' |
| Discrete Meyer | dmey ' |
| Biorthogonal | 'bior1.1', 'bior1.3', 'bior1.5' <br> 'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8' <br> 'bior3.1', 'bior3.3', 'bior3.5', 'bior3.7' <br> 'bior3.9', 'bior4.4', 'bior5.5', 'bior6.8' |
| Reverse Biorthogonal | ```'rbio1.1','rbio1.3','rbio1.5 'rbio2.2', 'rbio2.4','rbio2.6', 'rbio2.8' 'rbio3.1', 'rbio3.3','rbio3.5', 'rbio3.7' 'rbio3.9','rbio4.4','rbio5.5','rbio6.8'``` |

[F1,F2] = wfilters('wname','type') returns the following filters:

| Lo_D and Hi_D | (Decomposition filters) | If 'type' $=' d$ ' |
| :--- | :--- | :--- |
| Lo_R and Hi_R | (Reconstruction filters) | If 'type' $=' r '$ |
| Lo_D and Lo_R | (Low-pass filters) | If 'type' $=' l '$ |
| Hi_D and Hi_R | (High-pass filters) | If 'type' $=' h '$ |

Examples

```
% Set wavelet name.
wname = 'db5';
```

\% Compute the four filters associated with wavelet name given
\% by the input string wname.
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(wname);
subplot(221); stem(Lo_D);
title('Decomposition low-pass filter');
subplot(222); stem(Hi_D);
title('Decomposition high-pass filter');
subplot(223); stem(Lo_R);
title('Reconstruction low-pass filter');
subplot(224); stem(Hi_R);
title('Reconstruction high-pass filter');
xlabel('The four filters for db5')
\% Editing some graphical properties,
\% the following figure is generated.


References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics. SIAM Ed.

Mallat, S. (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674-693.

See Also biorfilt | orthfilt | waveinfo

Purpose Fusion of two images

```
Syntax
XFUS = wfusimg(X1,X2,WNAME,LEVEL,AFUSMETH, DFUSMETH)
[XFUS,TXFUS,TX1,TX2] = wfusimg(X1,X2,WNAME,LEVEL,AFUSMETH,
 DFUSMETH)
wfusimg(X1, X2, WNAME, LEVEL, AFUSMETH, DFUSMETH, FLAGPLOT)
```


## Description

The principle of image fusion using wavelets is to merge the wavelet decompositions of the two original images using fusion methods applied to approximations coefficients and details coefficients (see Zeeuw and Misiti et al.).

XFUS = wfusimg(X1, X2, WNAME, LEVEL, AFUSMETH, DFUSMETH) returns the fused image XFUS obtained by fusion of the two original images X1 and X2. Each fusion method, defined by AFUSMETH and DFUSMETH, merges in a specific way detailed below, the decompositions of X1 and X2, at level LEVEL and using wavelet WNAME.

AFUSMETH and DFUSMETH define the fusion method for approximations and details, respectively.
[XFUS,TXFUS,TX1,TX2] =
wfusimg(X1, X2, WNAME, LEVEL, AFUSMETH, DFUSMETH) returns, in addition to matrix XFUS, three objects of the class WDECTREE associated with XFUS, X1, and X2 respectively (see @WDECTREE). wfusimg ( X 1 , X 2 , WNAME, LEVEL, AFUSMETH, DFUSMETH, FLAGPLOT) also plots the objects TXFUS, TX1, and TX2.

Fusmeth denotes AFUSMETH or DFUSMETH. Available fusion methods are

- Simple - Fusmeth can be 'max', 'min', 'mean', 'img1', 'img2' or 'rand ', which merges the two approximations or details structures obtained from X1 and X2 elementwise by taking the maximum, the minimum, the mean, the first element, the second element, or a randomly chosen element
- Parameter-dependent - Fusmeth is of the following form

```
Fusmeth = struct('name',nameMETH,'param',paramMETH)
```

where nameMETH can be

| 'linear' |  |
| :--- | :--- |
| 'UD_fusion' | Up-down fusion |
| 'DU_fusion' | Down-up fusion |
| 'RL_fusion' | Right-left fusion |
| 'UserDEF' | User-defined fusion |

For the description of these options and the paramMETH parameter, see wfusmat.

Tips

Examples

X1 and X2 must be of same size (see wextend to resize images) and represent indexed images or truecolor images, which are m-by-n matrices or m-by-n-by-3 arrays, respectively.

For more information on image formats, see the image and imfinfo reference pages.

The following three examples examine the process of image fusion

- The first example merges two different images leading to a new image
- The second example restores an image from two fuzzy versions of an original image.
- The third example shows how to make an image fusion using a user defined fusion method.
\% Example 1: Fusion of two different images
\% Load two original images: a mask and a bust
load mask; X1 = X;
load bust; X2 = X;
\% Merge the two images from wavelet decompositions at level 5
\% using db2 by taking two different fusion methods
\% fusion by taking the mean for both approximations and details XFUSmean $=$ wfusimg(X1, X2,'db2',5,'mean','mean');
\% fusion by taking the maximum for approximations and the \% minimum for the details
XFUSmaxmin = wfusimg(X1,X2,'db2',5,'max','min');
\% Plot original and synthesized images colormap (map) ;
subplot(221), image(X1), axis square, title('Mask') subplot(222), image(X2), axis square, title('Bust') subplot(223), image(XFUSmean), axis square, title('Synthesized image, mean-mean') subplot(224), image(XFUSmaxmin), axis square, title('Synthesized image, max-min')



\% Example 2: Restoration by fusion of fuzzy images
\% Load two fuzzy versions of an original image

```
load cathe_1; X1 = X;
load cathe_2; X2 = X;
% Merge the two images from wavelet decompositions at level 5
% using sym4 by taking the maximum of absolute value of the
% coefficients for both approximations and details
XFUS = wfusimg(X1,X2,'sym4',5,'max','max');
% Plot original and synthesized images
colormap(map);
subplot(221), image(X1), axis square,
title('Catherine 1')
subplot(222), image(X2), axis square,
title('Catherine 2')
subplot(223), image(XFUS), axis square,
title('Synthesized image')
```


\% The synthesized image is a restored version of good \% quality of the common underlying original image.

```
% Example 3: Fusion using a user defined fusion method.
% This example calls a user fusion method defined by the
% file myfus_FUN.m which is listed below at the end of
% the example.
% load two images of the same size.
load mask; A = X;
load bust; B = X;
% Define the fusion method and call the fusion function
Fus_Method = struct('name','userDEF','param','myfus_FUN');
C = wfusmat(A,B,Fus_Method);
figure;
colormap(pink(220))
subplot(1,3,1), image(A), title('Original Image 1'), axis square
subplot(1,3,2), image(C), title('Fusioned Image'), axis square
subplot(1,3,3), image(B), title('Original Image 2'), axis square
```



```
%********************************
% User defined fusion method.
%********************************
 function C = myfus_FUN(A,B)
D = logical(triu(ones(size(A)))); t = 0.3;
C = A;
```

$$
\begin{aligned}
& C(D)=t * A(D)+(1-t) * B(D) ; \\
& C(\sim D)=t * B(\sim D)+(1-t) * A(\sim D) ;
\end{aligned}
$$

References Zeeuw, P.M. (1998), "Wavelet and image fusion," CWI, Amsterdam, March 1998, http:/www.cwi.nl/~pauldz/

Misiti, M.; Y. Misiti, G. Oppenheim, J.-M. Poggi (2003), "Les ondelettes et leurs applications," Hermes.

See Also
wfusmat | wextend

Purpose Fusion of two matrices or arrays
Syntax $\quad C=$ wfusmat $(A, B$, METHOD $)$
Description
$C=$ wfusmat $(A, B, M E T H O D)$ returns the fused matrix $C$ obtained from the matrices $A$ and $B$ using the fusion method defined by METHOD.

The matrices $A$ and $B$ must be of the same size. The output matrix C is of the same size as $A$ and $B$.

Available fusion methods are

- Simple, where METHOD is
- 'max': D = abs(A) $\geq \operatorname{abs}(B) ; C=A(D)+B(\sim D)$
- 'min': D = abs(A) $\leq \operatorname{abs}(B) ; C=A(D)+B(\sim D)$
- 'mean': C = (A+B) / 2 ; D = ones(size (A))
- 'rand ' $: \mathrm{C}=\mathrm{A}(\mathrm{D})+\mathrm{B}(\sim \mathrm{D}) ; \mathrm{D}$ is a Boolean random matrix
- 'img1': C = A
- 'img2': C = B
- Parameter-dependent, where METHOD is of the following form:

METHOD = struct('name', nameMETH,'param', paramMETH)
where nameMETH can be

- 'linear': C = A*paramMETH + B*(1-paramMETH), where $0 £$ paramMETH $\leq 1$
- 'UD_fusion': Up-down fusion, with paramMETH $\geq 0$
$x=\operatorname{linspace}(0,1, \operatorname{size}(A, 1))$;
P = x.^paramMETH;
Then each row of C is computed with

$$
C(i,:)=A(i,:) *(1-P(i))+B(i,:) * P(i) ;
$$

So $C(1,:)=A(1,:)$ and $C(e n d,:)=A(e n d,:)$

- 'DU_fusion': Down-up fusion
- 'LR_fusion': Left-right fusion (columnwise fusion)
- 'RL_fusion': Right-left fusion (columnwise fusion)
- 'UserDEF': User-defined fusion, paramMETH is a string 'userFUNCTION' containing a function name such that $C=$ userFUNCTION ( $A, B$ ).

In addition, $[C, D]=$ wfusmat $(A, B, M E T H O D)$ returns the Boolean matrix $D$ when defined, or an empty matrix otherwise.

Purpose Keep part of vector or matrix

```
Syntax }\quadY=\mathrm{ wkeep (X,L,OPT)
Y = wkeep(X,L,FIRST)
Y = wkeep(X,L)
Y = wkeep(X,L,'c')
Y = wkeep(X,S,[FIRSTR FIRSTC])
```


## Description

wkeep is a general utility.
For a vector, $Y=$ wkeep $(X, L, O P T)$ extracts the vector $Y$ from the vector $X$. The length of $Y$ is $L$.

If OPT = 'c' ('l', 'r', respectively), Y is the central (left, right, respectively) part of $X$.
$Y=$ wkeep (X,L,FIRST) returns the vector X(FIRST:FIRST+L-1).
$Y=$ wkeep $(X, L)$ is equivalent to $Y=$ wkeep $\left(X, L, C^{\prime}\right)$.
For a matrix, $Y=$ wkeep $(X, S)$ extracts the central part of the matrix $X$. The size of $Y$ is $S$.

Y = wkeep (X,S,[FIRSTR FIRSTC]) extracts the submatrix of matrix X , of size $S$ and starting from X(FIRSTR,FIRSTC).

## Examples

```
% For a vector.
x = 1:10;
y = wkeep(x,6,'c')
y =
 3
y = wkeep(x,6)
y =
 3
y = wkeep(x,7,'c')
y =
 2
```

```
y = wkeep(x,6,'l')
y =
 1 2 % 3 % 4
y = wkeep(x,6,'r')
y =
 5
 1 0
% For a matrix.
x = magic(5)
x =
\begin{tabular}{rrrrr}
17 & 24 & 1 & 8 & 15 \\
23 & 5 & 7 & 14 & 16 \\
4 & 6 & 13 & 20 & 22 \\
10 & 12 & 19 & 21 & 3 \\
11 & 18 & 25 & 2 & 9
\end{tabular}
y = wkeep(x,[3 2])
y =
 5 7
 6 13
 12 19
```

Purpose Maximum wavelet decomposition level
Syntax L = wmaxlev(S,'wname')
Description
wmaxlev is a one- or two-dimensional wavelet or wavelet packets oriented function.
wmaxlev can help you avoid unreasonable maximum level values. L $=$ wmaxlev(S, 'wname') returns the maximum level decomposition of signal or image of size S using the wavelet named in the string 'wname' (see wfilters for more information).
wmaxlev gives the maximum allowed level decomposition, but in general, a smaller value is taken.

Usual values are 5 for the one-dimensional case, and 3 for the two-dimensional case.

```
Examples \% For a 1-D signal.
\(\mathrm{s}=2^{\wedge} 10\);
w = 'db1';
\% Compute maximum level decomposition.
\% The rule is the last level for which at least
\% one coefficient is correct.
l = wmaxlev(s,w)
1 =
 10
\% Change wavelet.
w = 'db7';
\% Compute maximum level decomposition.
l = wmaxlev(s,w)
1 =
 6
```

```
% For a 2-D signal.
s = [2^9 2^7];
w = 'db1';
% Compute maximum level decomposition.
l = wmaxlev(s,w)
l =
 7
% which is the same as:
l = wmaxlev(min(s),w)
l =
 7
% Change wavelet.
w = 'db7';
% Compute maximum level decomposition.
l = wmaxlev(s,w)
l =
 3
```

See Also wavedec | wavedec2 | wpdec | wpdec2

## Purpose Matching pursuit

```
Syntax YFIT = wmpalg(MPALG,Y,MPDICT)
[YFIT,R] = wmpalg(...)
[YFIT,R,COEFF] = wmpalg(...)
[YFIT,R,COEFF,IOPT] = wmpalg(...)
[YFIT,R,COEFF,IOPT,QUAL] = wmpalg(...)
[YFIT,R,COEFF,IOPT,QUAL,X] = wmpalg(...)
[YFIT, R, COEFF,IOPT,QUAL,X] = wmpalg(...,Name,Value)
```


## Description

YFIT = wmpalg(MPALG, Y, MPDICT) returns an adaptive greedy approximation, YFIT, of the input signal, Y, in the dictionary, MPDICT. The adaptive greedy approximation uses the matching pursuit algorithm, MPALG. The dictionary, MPDICT, is typically an overcomplete set of vectors constructed using wmpdictionary.
[YFIT,R] = wmpalg(...) returns the residual, R, which is the difference vector between $Y$ and YFIT at the termination of the matching pursuit.
[YFIT,R,COEFF] = wmpalg(...) returns the expansion coefficients, COEFF. The number of expansion coefficients depends on the number of iterations in the matching pursuit.
[YFIT,R,COEFF, IOPT] = wmpalg(...) returns the column indices of the retained atoms, IOPT. The length of IOPT equals the length of COEFF and is determined by the number of iterations in the matching pursuit.
[YFIT,R,COEFF, IOPT, QUAL] = wmpalg(...) returns the proportion of retained signal energy, QUAL, for each iteration of the matching pursuit. QUAL is the ratio of the $\ell^{2}$ squared norm of the expansion coefficient vector, COEFF, to the $\ell^{2}$ squared norm of the input signal, Y .
[YFIT, R, COEFF, IOPT, QUAL, X] = wmpalg(...) returns the normalized dictionary, $X$. $X$ contains the unit vectors in the $\ell^{2}$ norm corresponding to the columns of MPDICT.
[YFIT, R, COEFF, IOPT, QUAL, X] = wmpalg(..., Name, Value) returns an adaptive greedy approximation with additional options specified by one or more Name, Value pair arguments.

## Input <br> Arguments

## MPALG

Matching pursuit algorithm as a string. Valid entries are:

- 'BMP' - Basic matching pursuit
- 'OMP' - Orthogonal matching pursuit
- 'WMP' - Weak orthogonal matching pursuit

See "Matching Pursuit Algorithms".
Default: 'BMP'

## MPDICT

Matching pursuit dictionary. MPDICT is a N-by-P matrix where N is equal to the length of the input signal, Y. You can construct MPDICT using wmpdictionary. In matching pursuit, MPDICT is commonly a frame, or overcomplete set of vectors. You may use the Name-Value pair 'lstcpt' to specify a dictionary instead of using MPDICT. If you specify a value for 'lstcpt', wmpalg calls wmpdictionary.

## Y

Signal for matching pursuit. Y is 1-D, real-valued row or column vector. The row dimension of MPDICT must match the length of Y .

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.
'itermax'

Positive integer fixing the maximum number of iterations of the matching pursuit algorithm. If you do not specify a 'maxerr' value, the number of expansion coefficients, COEFF, the number of dictionary vector indices, IOPT, and the length of the QUAL vector equal the value of 'itermax'.

Default: 25

## 'Istcpt'

A cell array of cell arrays with valid subdictionaries. This name-value pair is only valid if you do not input a dictionary in MPDICT. Each cell array describes one subdictionary. Valid subdictionaries are:

- A valid Wavelet Toolbox orthogonal or biorthogonal wavelet family short name with the number of vanishing moments and an optional decomposition level and extension mode. For example, \{'sym4',5\} denotes the Daubechies least-asymmetric wavelet with 4 vanishing moments at level 5 and the default extension mode 'per'. If you do not specify the optional number level and extension mode, the decomposition level defaults to 5 and the extension mode to 'per'.
- A valid Wavelet Toolbox orthogonal or biorthogonal wavelet family short name preceded by wp with the number of vanishing moments and an optional decomposition level and extension mode. For example, \{'wpsym4',5\} denotes the Daubechies least-asymmetric wavelet packet with 4 vanishing moments at level 5 . If you do not specify the optional number level and extension mode, the decomposition level defaults to 5 and the extension mode to 'per'.
- 'dct' Discrete cosine transform-II basis. The DCT-II orthonormal basis is:

$$
\phi_{k}(n)= \begin{cases}\frac{1}{\sqrt{N}} & k=0 \\ \sqrt{\frac{2}{N}} \cos \left(\frac{\pi}{N}\left(n+\frac{1}{2}\right) k\right) & k=1,2, \ldots, N-1\end{cases}
$$

- 'sin' Sine subdictionary. The sine subdictionary is:

$$
\phi_{k}(t)=\sin (2 \pi k t) \quad k=1,2, \ldots,\left\lceil\frac{N}{2}\right\rceil 0 \leq t \leq 1
$$

- 'cos ' Cosine subdictionary. The cosine subdictionary is

$$
\phi_{k}(t)=\cos (2 \pi k t) \quad k=1,2, \ldots,\left\lceil\frac{N}{2}\right\rceil 0 \leq t \leq 1
$$

- 'poly ' Polynomial subdictionary. The polynomial subdictionary is:

$$
p_{n}(t)=t^{n-1} \quad n=1,2, \ldots 20 \quad 0 \leq t \leq 1
$$

- 'RnIdent ' The shifted Kronecker delta subdictionary. The shifted Kronecker delta subdictionary is:

$$
\phi_{k}(n)=\delta(n-k) \quad k=0,1, \ldots N
$$

If you use the 'lstcpt' name-value pair to generate your dictionary, you can use the additional 'addbeg ' and 'addend ' name-value pairs to append and addend dictionary atoms. See wmpdictionary for details.

## 'maxerr'

Cell array containing the name of the norm and the maximum relative error in the norm expressed as a percentage. Valid norms are 'L1', 'L2', and 'Linf'. The relative error expressed as a percentage is

$$
100 \frac{\|R\| \mid}{\| Y| |}
$$

where $R$ is the residual at each iteration and $Y$ is the input signal. For example, $\{$ 'L1', 10$\}$ sets maximum acceptable ratio of the L1 norms of the residual to the input signal to 0.10 .
If you specify 'maxerr', the matching pursuit terminates when the first of the following conditions is satisfied:

- The number of iterations reaches the minimum of the length of the input signal, Y , or 500 : min(length (Y),500)
- The relative error falls below the percentage you specify with the 'maxerr' name-value pair.


## 'stepplot'

Number of iterations between successive plots. 'stepplot ' requires a positive integer. This name-value pair is only valid when 'typeplot' is 2 or 3 ('movie' or 'stepwise').

## 'typeplot'

Type of plot to produce during the progression of matching pursuit. Valid entries for 'typeplot' are: 0 or 'none', 1 or 'one', 2 or 'movie', 3 or 'stepwise'. When 'typeplot' is 'movie' or 'stepwise', the plot updates based on the value of 'stepplot'.

Default: 0 or 'none'

## 'wmpcfs'

Optimality factor for weak orthogonal matching pursuit. The optimality factor is a real number in the interval $(0,1]$. This name-value pair is only valid when MPALG is 'WMP'.

Default: 0.6

## Output Arguments

## YFIT

Adaptive greedy approximation of the input signal, Y , in the dictionary

## R

Residual after matching pursuit terminates

## COEFF

Expansion coefficients in the dictionary. The selected dictionary atoms weighted by the expansion coefficients yield the approximated signal, YFIT.

## IOPT

Column indices of the selected dictionary atoms. Using the column indices in IOPT with the expansion coefficients in COEFF, you can form the approximated signal, YFIT.

## QUAL

Proportion of retained signal energy for each iteration in the matching pursuit. QUAL is a vector with each element equal to
$\frac{\left|\left|\alpha_{k}\right|_{2}^{2}\right.}{||Y||_{2}^{2}}$
where $\alpha_{k}$ is the vector of expansion coefficients after the $k$-th iteration.

## X

The normalized matching pursuit dictionary. X is an N -by-P matrix where N is the length of the input signal, Y . The columns of X have unit norm.

## Examples Adaptive Approximation using Orthogonal Matching Pursuit

Approximate the cuspamax signal with the dictionary using orthogonal matching pursuit.

Use a dictionary consisting of sym4 wavelet packets and the DCT-II basis.

```
load cuspamax;
mpdict = wmpdictionary(length(cuspamax),'LstCpt',{{'wpsym4',2},'dct'})
yfit = wmpalg('OMP',cuspamax,mpdict);
plot(cuspamax,'k'); hold on;
plot(yfit,'linewidth',2); legend('Original Signal','Matching Pursuit')
```


## Return Residual, Expansion Coefficients, Selected Atoms, and Approximation Quality

Obtain the expansion coefficients in the dictionary, the column indices of the selected dictionary atoms, and the proportion of retained signal energy.

Create a dictionary consisting of sym4 wavelet packets and the DCT-II basis. Approximate the cuspamax signal with the dictionary using orthogonal matching pursuit.

```
load cuspamax;
mpdict = wmpdictionary(length(cuspamax),'LstCpt',{{'wpsym4',2},'dct'});
[yfit,r,coeff,iopt,qual] = wmpalg('OMP',cuspamax,mpdict);
```


## Specify the Maximum Number of Iterations

Set the maximum number of iterations of the orthogonal matching pursuit to 50 .

```
load cuspamax;
lstcpt = {{'wpsym4',1},{'wpsym4',2},'dct'};
mpdict = wmpdictionary(length(cuspamax),'LstCpt',lstcpt);
[yfit,r,coeff,iopt,qual] = wmpalg('OMP',cuspamax,mpdict,'itermax',50);
```


## Stepwise Plot of Weak Orthogonal Matching Pursuit

Allow for a suboptimal choice in the update of the orthogonal matching pursuit.

Relax the requirement to be 0.8 times the optimal assignment. Plot the results stepwise and update the plot every 5 iterations.

```
load cuspamax;
lstcpt = {{'wpsym4',1},{'wpsym4',2},'dct'};
mpdict = wmpdictionary(length(cuspamax),'LstCpt',lstcpt);
[yfit,r,coeff,iopt,qual] = wmpalg('WMP',cuspamax,mpdict,'wmpcfs',0.8,...
 'typeplot','stepwise','stepplot',5);
```


## Matching Pursuit of Electricity Consumption Data

Obtain a matching pursuit of electricity consumption measured every minute over a 24 -hour period.

Load and plot data. The data shows electricity consumption sampled every minute over a 24 -hour period. Because the data is centered, the actual usage values are not interpretable.

```
load elec35_nor;
y = signals(32,:);
plot(y); xlabel('Minutes'); ylabel('Usage');
set(gca,'xlim',[1 1440]);
```

Construct a dictionary for matching pursuit consisting of the Daubechies' extremal-phase wavelet with 2 vanishing moments at level 2, the Daubechies' least-asymmetric wavelet with 4 vanishing moments at levels 1 and 4, the discrete cosine transform-II basis, and the sine basis.

```
dictionary = {{'db4',2},'dct','sin',{'sym4',1},{'sym4',4}};
[mpdict,nbvect] = wmpdictionary(length(y),'lstcpt',dictionary);
```

Implement orthogonal matching pursuit to obtain a signal approximation in the dictionary. Use 35 iterations. Plot the result.

```
[yfit,r,coef,iopt,qual] = wmpalg('OMP',y,mpdict,'itermax',35);
plot(y); hold on;
plot(yfit,'r'); xlabel('Minutes'); ylabel('Usage');
legend('Original Signal','OMP','Location','NorthEast');
set(gca,'xlim',[1 1440]);
```

Using the expansion coefficients in coef and the atom indices in iopt, construct the signal approximation, yhat, directly from the dictionary. Compare yhat with yfit returned by wmpalg.

```
[~,I] = sort(iopt);
X = mpdict(:,iopt(I));
yhat = X*coef(I);
```

```
max(abs(yfit-yhat))
```

| References | [1] Cai, T.T. and Wang,L. "Orthogonal Matching Pursuit for Sparse Signal Recovery with Noise". IEEE ${ }^{\circledR}$ Transactions on Information Theory, vol. 57, 7, 4680-4688, 2011. |
| :---: | :---: |
|  | [2] Donoho, D., Elad, M., and Temlyakov, V. "Stable Recovery of Sparse Overcomplete Representations in the Presence of Noise". IEEE Transactions on Information Theory. Vol. 52, 1, 6-18, 2004. |
|  | [3] Mallat, S. and Zhang, Z. "Matching Pursuits with Time-Frequency Dictionaries". IEEE Transactions on Signal Processing, vol. 41, 12, 3397-3415, 1993 |
|  | [4] bTropp, J.A. "Greed is good: Algorithmic results for sparse approximation". IEEE Transactions on Information Theory, 50, pp. 2231-2242, 2004. |
| See Also | wavemenu \| wmpdictionary |
| Related | - "Matching Pursuit - Command Line" |
| Examples | - "Matching Pursuit - Interactive Analysis" |
| Concepts | - "Sparse Representation in Redundant Dictionaries" <br> - "Matching Pursuit Algorithms" |

Purpose Dictionary for matching pursuit
Syntax

MPDICT = wmpdictionary(N)
[MPDICT,NBVECT] = wmpdictionary(N)
[MPDICT, NBVECT]= wmpdictionary(N,Name,Value)
[MPDICT, NBVECT,LST] = wmpdictionary(N,Name, Value)
[MPDICT, NBVECT,LST,LONGS] = wmpdictionary(N,Name, Value)

## Description

## Input

Arguments
MPDICT = wmpdictionary ( N ) returns the N -by-P
dictionary, MPDICT, for the default subdictionaries
\{\{'sym4',5\},\{'wpsym4',5\},'dct','sin'\}. The column
dimension of MPDICT depends on $N$.
[MPDICT, NBVECT] = wmpdictionary( N ) returns the row vector, NBVECT, which contains the number of vectors in each subdictionary. The order of the elements in NBVECT corresponds to the order of the subdictionaries and any prepended or appended subdictionaries. The sum of the elements in NBVECT is the column dimension of MPDICT.
[MPDICT,NBVECT]= wmpdictionary(N,Name,Value) returns the dictionary, MPDICT, using additional options specified by one or more Name, Value pair arguments.
[MPDICT, NBVECT, LST] = wmpdictionary(N,Name, Value) returns the cell array, LST, with descriptions of the subdictionaries.
[MPDICT, NBVECT,LST,LONGS] = wmpdictionary (N,Name, Value) returns the cell array, LONGS, containing the number of vectors in each subdictionary. LONGS is only useful for wavelet subdictionaries. In wavelet subdictionaries, the corresponding element in LONGS gives the number of scaling functions at the coarsest level and wavelet functions by level. See "Visualize Haar Wavelet Dictionary" on page 1-511 for an example using LONGS.

## N

A positive integer equal to the length of your input signal. The dictionary atoms are constructed to have N elements. N equals the row dimension of the dictionary, MPDICT.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

## 'addbeg'

Prepended subdictionary. The prepended subdictionary is an N-by-M matrix where N is the length of the input signal. wmpdictionary does not check that the M column vectors of the prepended dictionary form a basis. If you do not specify a value for lstcpt, the subdictionary is prepended to the default dictionary. The column vectors in the prepended subdictionary do not have to be unit-norm.

## 'addend'

Appended subdictionary. The appended subdictionary is a N-by-M matrix where N is the length of the input signal. wmpdictionary does not check that the M column vectors of the prepended dictionary form a basis. If you do not specify a value for lstcpt, the subdictionary is appended to the default dictionary. The column vectors in the appended subdictionary do not have to be unit-norm.

## 'Istcpt'

A cell array of cell arrays with valid subdictionaries. Each cell array describes one subdictionary. Valid subdictionaries are:

- A valid Wavelet Toolbox orthogonal or biorthogonal wavelet family short name with the number of vanishing moments and an optional decomposition level and extension mode. For example, \{'sym4', 5\} denotes the Daubechies least-asymmetric wavelet with 4 vanishing moments at level 5 and the default extension mode 'per'. If you do not specify the optional level and extension mode, the decomposition level defaults to 5 and the extension mode to 'per'.
- A valid Wavelet Toolbox orthogonal or biorthogonal wavelet family short name preceded by wp with the number of vanishing moments and an optional decomposition level and extension mode. For example, $\{$ 'wpsym4', 5$\}$ denotes the Daubechies least-asymmetric wavelet packet with 4 vanishing moments at level 5 . If you do not specify the optional level and extension mode, the decomposition level defaults to 5 and the extension mode to 'per'.
- 'dct' Discrete cosine transform-II basis. The DCT-II orthonormal basis is:

$$
\phi_{k}(n)= \begin{cases}\frac{1}{\sqrt{N}} & k=0 \\ \sqrt{\frac{2}{N}} \cos \left(\frac{\pi}{N}\left(n+\frac{1}{2}\right) k\right) & k=1,2, \ldots, N-1\end{cases}
$$

- 'sin' Sine subdictionary. The sine subdictionary is

$$
\phi_{k}(t)=\sin (2 \pi k t) \quad k=1,2, \ldots,\left\lceil\frac{N}{2}\right\rceil 0 \leq t \leq 1
$$

where $t$ is a linearly-spaced $N$-point vector.

- 'cos ' Cosine subdictionary. The cosine subdictionary is

$$
\phi_{k}(t)=\cos (2 \pi k t) \quad k=1,2, \ldots,\left\lceil\frac{N}{2}\right\rceil 0 \leq t \leq 1
$$

where $t$ is a linearly-spaced $N$-point vector.

- 'poly ' Polynomial subdictionary. The polynomial subdictionary is:

$$
p_{n}(t)=t^{n-1} \quad n=1,2, \ldots 20 \quad 0 \leq t \leq 1
$$

where $t$ is a linearly-spaced $N$-point vector.

- 'RnIdent ' The shifted Kronecker delta subdictionary. The shifted Kronecker delta subdictionary is:

$$
\phi_{k}(n)=\delta(n-k) \quad k=0,1, \ldots N
$$

## wmpdictionary

Default: \{\{'sym4',5\}, \{'wpsym4', 5$\},$ 'dct', 'sin'\}

## Output <br> Arguments

## Definitions

## MPDICT

Matching pursuit dictionary. MPDICT is an N-by-P matrix with the row dimension, N , equal to the length of the input signal. The column dimension of the matrix depends on the size of the concatenated subdictionaries.

## NBVECT

Number of vectors in subdictionaries. NBVECT is a row vector containing the number of elements in each subdictionary. The order of the elements in NBVECT corresponds to the order of the subdictionaries and any prepended or appended subdictionaries.

## LST

Cell array describing the dictionary. LST is a 1 -by- N cell array where N is the number of subdictionaries. Each element of the cell array contains a description of a subdictionary. If you specify a prepended or appended subdictionary, the first element of LST is 'AddBeg ' or 'AddEnd '. If you specify a level for the wavelet or wavelet packet, the corresponding element of LST is a 1-by- 2 cell array containing the wavelet or wavelet packet name in the first element and the level in the second element.

## LONGS

Cell array containing the number of elements for each subdictionary. LONGS is useful only for wavelet subdictionaries. If you specify a wavelet subdictionary, the corresponding element of LONGS provides the number of scaling functions at the coarsest level and the number of wavelets at each level. See "Visualize Haar Wavelet Dictionary" on page 1-511 for an example using LONGS.

## Matching Pursuit

Matching pursuit refers to a number of greedy or weak-greedy algorithms for computing an adaptive nonlinear expansion of a signal
in a dictionary. In the majority of matching pursuit applications, a dictionary is an overcomplete set of vectors. The elements of the dictionary are referred to as atoms and are typically constructed to have certain time/frequency or time/scale properties. Matching pursuit takes the NP-hard problem of finding the best nonlinear expansion in a dictionary and implements it in an energy-perserving formulation that guarantees convergence. See "Matching Pursuit Algorithms" for more details.

## Examples Default Dictionary

Create the default dictionary to represent a signal of length 100 .

```
mpdict = wmpdictionary(100);
```


## Discrete Cosine Transform and Kronecker Delta Dictionary

Create a DCT and shifted Kronecker delta dictionary to represent a signal of length 100.

```
mpdict = wmpdictionary(100,'lstcpt',{'dct','RnIdent'});
```


## Haar Wavelet Packets and Discrete Cosine Transform Dictionary

Create a Haar wavelet packet (level 2) and DCT dictionary. Return the number of atoms in each subdictionary.

```
[mpdict,nbvect] = wmpdictionary(100,'lstcpt',{{'wphaar',2},'dct'});
```


## Visualize Haar Wavelet Dictionary

Use the output argument, LONGS, to visualize a dictionary.
Create a Haar wavelet dictionary consisting of level-2 scaling functions and level-1 and level-2 wavelet functions.

```
[mpdict,~,~,longs] = wmpdictionary(100,'lstcpt',{{'haar',2}});
for nn = 1:size(mpdict,2)
 if (nn <= longs{1}(1))
```

```
 plot(mpdict(:,nn),'k','linewidth',2); grid on;
xlabel('Translation');
 title('Haar Scaling Function - Level 2');
elseif (nn>longs{1}(1) & nn<= longs{1}(1)+longs{1}(2))
 plot(mpdict(:,nn),'r','linewidth',2); grid on;
 xlabel('Translation');
 title('Haar Wavelet - Level 2');
else
 title('Haar Wavelet - Level 1');
 plot(mpdict(:,nn),'b','linewidth',2); grid on;
 title('Haar Wavelet - Level 1');
 xlabel('Translation');
end
 pause(0.2);
```

end

## References

## See Also wavemenu | wmpalg

Related - "Matching Pursuit - Command Line"
Examples Theory, vol. 57, 7, 4680-4688, 2011. Overcomplete Representations in the Presence of Noise". IEEE Transactions on Information Theory, 52,1, 6-18, 2004. 3397-3415, 1993
[4] Tropp, J.A. "Greed is good: Algorithmic results for sparse 2231-2242, 2004.

- "Matching Pursuit - Interactive Analysis"
[1] Cai, T.T. and L. Wang "Orthogonal Matching Pursuit for Sparse Signal Recovery with Noise". IEEE Transactions on Information
[2] Donoho, D., M. Elad, and V. Temlyakov "Stable Recovery of Sparse
[3] Mallat, S. and Z. Zhang "Matching Pursuits with Time-Frequency Dictionaries". IEEE Transactions on Signal Processing, vol. 41, 12, approximation". IEEE Transactions on Information Theory, 50, pp.


## Concepts

- "Sparse Representation in Redundant Dictionaries"
- "Matching Pursuit Algorithms"


## Purpose <br> Multiscale Principal Component Analysis

```
Syntax
[X_SIM,QUAL,NPC,DEC_SIM,PCA_Params] = wmspca(X,LEVEL,WNAME,
 NPC)
[...] = wmspca(X,LEVEL,WNAME,'mode',EXTMODE,NPC)
[...] = wmspca(DEC,NPC)
[...] = wmspca(X,LEVEL, WNAME,'mode',EXTMODE,NPC)
```


## Description

[X_SIM,QUAL,NPC,DEC_SIM,PCA_Params] = wmspca(X,LEVEL,WNAME,NPC) or [...] = wmspca(X,LEVEL,WNAME, 'mode', EXTMODE,NPC) returns a simplified version X_SIM of the input matrix $X$ obtained from the wavelet-based multiscale principal component analysis (PCA).

The input matrix $X$ contains $P$ signals of length $N$ stored columnwise ( $\mathrm{N}>\mathrm{P}$ ).

## Wavelet Decomposition Parameters

The wavelet decomposition is performed using the decomposition level LEVEL and the wavelet WNAME.

EXTMODE is the extended mode for the DWT (See dwtmode).
If a decomposition DEC obtained using mdwtdec is available, you can use
[...] = wmspca(DEC,NPC) instead of
[...] = wmspca(X,LEVEL,WNAME,'mode',EXTMODE,NPC).

## Principal Components Parameter: NPC

If NPC is a vector, then it must be of length LEVEL+2. It contains the number of retained principal components for each PCA performed:

- NPC(d) is the number of retained noncentered principal components for details at level d , for $1<=\mathrm{d}<=$ LEVEL.
- NPC(LEVEL+1) is the number of retained non-centered principal components for approximations at level LEVEL.
- NPC(LEVEL+2) is the number of retained principal components for final PCA after wavelet reconstruction.

NPC must be such that $0<=\operatorname{NPC}(\mathrm{d})<=P$ for $1<=\mathrm{d}<=$ LEVEL+2.
If NPC = 'kais' (respectively, 'heur'), then the number of retained principal components is selected automatically using Kaiser's rule (or the heuristic rule).

- Kaiser's rule keeps the components associated with eigenvalues greater the mean of all eigenvalues.
- The heuristic rule keeps the components associated with eigenvalues greater than 0.05 times the sum of all eigenvalues.

If NPC = 'nodet', then the details are "killed" and all the approximations are retained.

## Output Parameters

X SIM is a simplified version of the matrix X .
QUAL is a vector of length $P$ containing the quality of column reconstructions given by the relative mean square errors in percent.

NPC is the vector of selected numbers of retained principal components.
DEC_SIM is the wavelet decomposition of X_SIM.
PCA_Params is a structure array of length LEVEL+2 such that:

- PCA_Params (d) . pc is a P-by-P matrix of principal components.

The columns are stored in descending order of the variances.

- PCA_Params(d).variances is the principal component variances vector.
- PCA_Params(d).npc = NPC


## Examples Wavelet Principal Component Analysis of Noisy Multivariate Signal

Use wavelet multiscale principal component analysis to denoise a multivariate signal.

Load the dataset consisting of 4 signals of length 1024. Plot the original signals and the signals with additive noise.

```
load ex4mwden;
kp = 0;
for i = 1:4
 subplot(4,2,kp+1), plot(x_orig(:,i)); axis tight;
 title(['Original signal ',num2str(i)])
 subplot(4,2,kp+2), plot(x(:,i)); axis tight;
 title(['Noisy signal ',num2str(i)])
 kp = kp + 2;
end
```

Perform the first multiscale wavelet PCA using the Daubechies' least-asymmetric wavelet with 4 vanishing moments, sym4. Obtain the multiresolution decomposition down to level 5 . Use the heuristic rule to decide how many principal components to retain.

```
level = 5;
wname = 'sym4';
npc = 'heur';
[x_sim, qual, npc] = wmspca(x,level,wname,npc);
```

Plot the result and examine the quality of the approximation.

```
qual
kp = 0;
for i = 1:4
 subplot(4,2,kp+1), plot(x(:,i)); axis tight;
 title(['Noisy signal ',num2str(i)])
 subplot(4,2,kp+2), plot(x_sim(:,i)); axis tight;
 title(['First PCA ',num2str(i)])
 kp = kp + 2;
end
```

The quality results are all close to $100 \%$. The npc vector gives the number of principal components retained at each level.

Suppress the noise by removing the principal components at levels $1-3$. Perform the multiscale PCA again.

```
npc(1:3) = zeros(1,3);
[x_sim, qual, npc] = wmspca(x,level,wname,npc);
```

Plot the result.

```
kp = 0;
for i = 1:4
 subplot(4,2,kp+1), plot(x(:,i)); axis tight;
 title(['Noisy signal ',num2str(i)])
 subplot(4,2,kp+2), plot(x_sim(:,i)); axis tight;
 title(['Second PCA ',num2str(i)])
 kp = kp + 2;
end
```


## Algorithms

## References

Aminghafari, M.; Cheze, N.; Poggi, J-M. (2006), "Multivariate de-noising using wavelets and principal component analysis," Computational Statistics \& Data Analysis, 50, pp. 2381-2398.

Bakshi, B. (1998), "Multiscale PCA with application to MSPC monitoring," AIChE J., 44, pp. 1596-1610.

## wmulden

Purpose Wavelet multivariate de-noising

| Syntax | ```[X_DEN,NPC,NESTCOV,DEC_DEN,PCA_Params,DEN_Params] = ... wmulden(X,LEVEL,WNAME,NPC_APP,NPC_FIN,TPTR,SORH) [...] = wmulden(X,LEVEL,WNAME,'mode',EXTMODE,NPC_APP,...) [...] = wmulden(DEC,NPC_APP) [...] = wmulden(X,LEVEL,WNAME,'mode',EXTMODE,NPC_APP) [DEC,PCA_Params] = wmulden('estimate',DEC,NPC_APP,NPC_FIN) [X_DEN,NPC,DEC_DEN,PCA_Params] = wmulden('execute',DEC, PC Params)``` |
| :---: | :---: |

## Description

[X_DEN,NPC,NESTCOV,DEC_DEN,PCA_Params,DEN_Params] = ... wmulden(X, LEVEL, WNAME, NPC_APP, NPC_FIN, TPTR, SORH) or [...] = wmulden(X,LEVEL, WNAME,'mode',EXTMODE,NPC_APP, ...) returns a de-noised version X_DEN of the input matrix X. The strategy combines univariate wavelet de-noising in the basis where the estimated noise covariance matrix is diagonal with noncentered Principal Component Analysis (PCA) on approximations in the wavelet domain or with final PCA.

The input matrix X contains P signals of length N stored columnwise where $N$ > P.

## Wavelet Decomposition Parameters

The wavelet decomposition is performed using the decomposition level LEVEL and the wavelet WNAME.

EXTMODE is the extended mode for the DWT (See dwtmode).
If a decomposition DEC obtained using mdwtdec is available, you can use

```
[...] = wmulden(DEC,NPC_APP) instead of
[...] = wmulden(X,LEVEL,WNAME,'mode',EXTMODE,NPC_APP).
```


## Principal Components Parameters: NPC_APP and NPC_FIN

The input selection methods NPC_APP and NPC_FIN define the way to select principal components for approximations at level LEVEL in
the wavelet domain and for final PCA after wavelet reconstruction, respectively.

If NPC_APP (or NPC_FIN) is an integer, it contains the number of retained principal components for approximations at level LEVEL (or for final PCA after wavelet reconstruction).

NPC_XXX must be such that $0<=$ NPC_XXX <= P
NPC_APP or NPC_FIN = 'kais' (or 'heur') selects the number of retained principal components using Kaiser's rule (or the heuristic rule) automatically.

- Kaiser's rule keeps the components associated with eigenvalues greater than the mean of all eigenvalues.
- Heuristic rule keeps the components associated with eigenvalues greater than 0.05 times the sum of all eigenvalues.

NPC_APP or NPC_FIN = 'none' is equivalent to NPC_APP or NPC_FIN = P.

## De-noising Parameters: TPTR and SORH

The default values for the de-noising parameters TPTR and SORH are:

```
TPTR = 'sqtwolog' and SORH = 's'
```

- Valid values for TPTR are

```
'rigsure', 'heursure', 'sqtwolog', 'minimaxi',
'penalhi', 'penalme', 'penallo'
```

- Valid values for SORH are:

```
's' (soft) or 'h' (hard)
```

For additional information, see wden and wbmpen.

## Output Parameters

X_DEN is a de-noised version of the input matrix $X$.
NPC is the vector of selected numbers of retained principal components.

NESTCOV is the estimated noise covariance matrix obtained using the minimum covariance determinant (MCD) estimator.

DEC_DEN is the wavelet decomposition of X_DEN.
PCA_Params is a structure such that:
PCA_Params.NEST = \{pc_NEST,var_NEST,NESTCOV\}
PCA_Params.APP = \{pc_APP,var_APP,npc_APP\}
PCA_Params.FIN = \{pc_FIN,var_FIN,npc_FIN\}
where:

- pc_XXX is a P-by-P matrix of principal components.

The columns are stored in descending order of the variances.

- var_XXX is the principal component variances vector.
- NESTCOV is the covariance matrix estimate for detail at level 1.

DEN_Params is a structure such that:

- DEN_Params.thrVAL is a vector of length LEVEL which contains the threshold values for each level.
- DEN_Params.thrMETH is a string containing the name of the de-noising method (TPTR).
- DEN_Params.thrTYPE is a character variable containing the type of the thresholding (SORH).


## Special Cases

[DEC,PCA_Params] = wmulden('estimate',DEC,NPC_APP,NPC_FIN) returns the wavelet decomposition DEC and the Principal Components Estimates PCA_Params.
[X_DEN,NPC,DEC_DEN,PCA_Params] = wmulden('execute', DEC, PC_Params) uses the principal components estimates PCA_Params previously computed.

The input value DEC can be replaced by X, LEVEL, and WNAME.

```
Examples \% Load a multivariate signal \(x\) together with
\% the original signals (x_orig) and true noise
\% covariance matrix (covar).
load ex4mwden
\% Set the de-noising method parameters.
level = 5;
wname = 'sym4';
tptr = 'sqtwolog';
sorh = 's';
\% Set the PCA parameters to select the number of
\% retained principal components automatically by
\% Kaiser's rule.
npc_app = 'kais';
npc_fin = 'kais';
\% Perform multivariate de-noising.
[x_den, npc, nestco] = wmulden(x, level, wname, npc_app, ...
 npc_fin, tptr, sorh);
\% Display the original and de-noised signals.
kp = 0;
for \(i=1: 4\)
 subplot(4,3,kp+1), plot(x_orig(:,i));
 title(['Original signal ',num2str(i)])
 subplot(4,3,kp+2), plot(x(:,i));
 title(['Observed signal ', num2str(i)])
 subplot(4,3,kp+3), plot(x_den(:,i));
 title(['De-noised signal ',num2str(i)])
 kp \(=k p+3\);
end
```

Orgnal signal 1
 Crignal signal 2


Oignal signal 3
 Orignal signal 4


Observed signal 1


Coserved signal 2


Coserved signal 3
 Coserved signal 4


De-noised signal 1



\% The results are good: the first function, which is
\% irregular, is correctly recovered while the second
\% function, more regular, is well de-noised.
\% The second output argument gives the numbers \% of retained principal components for PCA for \% approximations and for final PCA.
npc
npc $=$

22
\% The third output argument contains the estimated

```
% noise covariance matrix using the MCD based
% on the matrix of finest details.
nestco
nestco =
 1.0784 0.8333 0.6878 0.8141
 0.8333 1.0025 0.5275 0.6814
 0.6878 0.5275 1.0501 0.7734
 0.8141 0.6814 0.7734 1.0967
% The estimation is satisfactory since the values are close
% to the true values given by covar.
covar
covar =
\begin{tabular}{llll}
1.0000 & 0.8000 & 0.6000 & 0.7000 \\
0.8000 & 1.0000 & 0.5000 & 0.6000 \\
0.6000 & 0.5000 & 1.0000 & 0.7000 \\
0.7000 & 0.6000 & 0.7000 & 1.0000
\end{tabular}
```


## Algorithms

## References

The multivariate de-noising procedure is a generalization of the one-dimensional strategy. It combines univariate wavelet de-noising in the basis where the estimated noise covariance matrix is diagonal and non-centered Principal Component Analysis (PCA) on approximations in the wavelet domain or with final PCA.

The robust estimate of the noise covariance matrix given by the minimum covariance determinant estimator based on the matrix of finest details.

Aminghafari, M.; Cheze, N.; Poggi, J-M. (2006), "Multivariate de-noising using wavelets and principal component analysis," Computational Statistics \& Data Analysis, 50, pp. 2381-2398.

## wmulden

Rousseeuw, P.; Van Driessen, K. (1999), "A fast algorithm for the minimum covariance determinant estimator," Technometrics, 41, pp. 212-223.

See Also wmspca

## Purpose Noisy wavelet test data

```
Syntax }\quadX=\mathrm{ wnoise(FUN,N)
[X,XN] = wnoise(FUN,N,SQRT_SNR)
[X,XN] = wnoise(FUN,N,SQRT_SNR,INIT)
```

Description $\quad X=$ wnoise (FUN , $N$ ) returns values of the test signal given by FUN, on a $2^{\mathrm{N}}$ grid of $[0,1]$.
[X,XN] = wnoise(FUN,N,SQRT_SNR) returns a test vector X as above, rescaled such that std $(X)=$ SQRT_SNR. The returned vector XN contains the same test vector corrupted by additive Gaussian white noise $N(0,1)$. Then, XN has a signal-to-noise ratio of SNR = (SQRT_SNR) ${ }^{2}$.
[X,XN] = wnoise(FUN,N,SQRT_SNR,INIT) returns previous vectors $X$ and $X N$, but the generator seed is set to INIT value.

The six functions below are due to Donoho and Johnstone (See "References").

| FUN $=1$ | or | 'blocks' |
| :--- | :--- | :--- |
| FUN $=2$ | or | 'bumps' |
| FUN $=3$ | or | 'heavy sine' |
| FUN $=4$ | or | 'doppler' |
| FUN $=5$ | or | 'quadchirp' |
| FUN $=6$ | or | 'mishmash' |

```
Examples \(\%\) Generate \(2^{\wedge} 10\) samples of 'Heavy sine' (item 3).
\(x=\) wnoise \((3,10)\);
\% Generate 2^10 samples of 'Doppler' (item 4) and of
\% noisy 'Doppler' with a square root of signal-to-noise
\% ratio equal to 7.
[x,noisyx] = wnoise(4,10,7);
```



## References

Donoho, D.L.; I.M. Johnstone (1994), "Ideal spatial adaptation by wavelet shrinkage," Biometrika, vol. 81, pp. 425-455.

Donoho, D.L.; I.M. Johnstone (1995), "Adapting to unknown smoothness via wavelet shrinkage via wavelet shrinkage," $J A S A$, vol. 90, 432, pp. 1200-1224.

See Also wden

Purpose Estimate noise of 1-D wavelet coefficients

```
Syntax STDC = wnoisest(C,L,S)
STDC = wnoisest(C)
STDC = wnoisest(C)
```

STDC $=$ wnoisest ( $C, L, S$ ) returns estimates of the detail coefficients' standard deviation for levels contained in the input vector $S$. [ $\mathrm{C}, \mathrm{L}$ ] is the input wavelet decomposition structure (see wavedec for more information).

If C is a one dimensional cell array, STDC $=$ wnoisest (C) returns a vector such that $\operatorname{STDC}(k)$ is an estimate of the standard deviation of C $\{\mathrm{k}\}$.

If $C$ is a numeric array, STDC $=$ wnoisest ( $C$ ) returns a vector such that $\operatorname{STDC}(k)$ is an estimate of the standard deviation of $C(k,:)$.
The estimator used is Median Absolute Deviation / 0.6745, well suited for zero mean Gaussian white noise in the de-noising one-dimensional model (see thselect for more information).

## Examples Estimate Noise Standard Deviation in The Presence of Outliers

Estimate of the noise standard deviation in an $\mathrm{N}(0,1)$ white Gaussian noise vector with outliers.

Create an $\mathrm{N}(0,1)$ noise vector with 10 randomly-placed outliers.

```
rng default;
x = randn(1000,1);
P = randperm(length(x));
indices = P(1:10);
x(indices(1:5)) = 10;
x(indices(6:end)) = -10;
```

Obtain the discrete wavelet transform down to level 2 using the Daubechies' extremal phase wavelet with 3 vanishing moments.

```
[c,l] = wavedec(x,2,'db3');
stdc = wnoisest(c,l,1:2)
```

In spite of the outliers, wnoisest provides a robust estimate of the standard deviation.

References Donoho, D.L.; I.M. Johnstone (1994), "Ideal spatial adaptation by wavelet shrinkage," Biometrika, vol 81, pp. 425-455.<br>Donoho, D.L.; I.M. Johnstone (1995), "Adapting to unknown smoothness via wavelet shrinkage via wavelet shrinkage," $J A S A$, vol 90, 432, pp. 1200-1224.

## See Also <br> thselect | wavedec | wden

Purpose Extract wavelet tree from wavelet packet tree

## Syntax $\quad T=$ wp2wtree $(T)$

Description
wp2wtree is a one- or two-dimensional wavelet packet analysis function.
$\mathrm{T}=$ wp2wtree $(T)$ computes the modified wavelet packet tree $T$ corresponding to the wavelet decomposition tree.

Examples \% The current extension mode is zero-padding (see dwtmode).
\% Load signal.
load noisdopp; x = noisdopp;
\% Decompose x at depth 3 with db1 wavelet packets
\% using shannon entropy.
wpt = wpdec(x,3,'db1');
\% Plot wavelet packet tree wpt. plot(wpt)


[^12]\% Plot wavelet tree wt. plot(wt)


See Also
wpdec | wpdec2

```
Purpose Penalized threshold for wavelet packet de-noising
Syntax THR = wpbmpen(T,SIGMA, ALPHA)
wpbmpen(T,SIGMA, ALPHA, ARG)
```

Examples
\% Example 1: Signal de-noising.
\% Load noisy chirp signal.

```
load noischir; x = noischir;
% Perform a wavelet packet decomposition of the signal
% at level }5\mathrm{ using sym6.
wname = 'sym6'; lev = 5;
tree = wpdec(x,lev,wname);
% Estimate the noise standard deviation from the
% detail coefficients at level 1,
% corresponding to the node index 2.
det1 = wpcoef(tree,2);
sigma = median(abs(det1))/0.6745;
% Use wpbmpen for selecting global threshold
% for signal de-noising, using the recommended parameter.
alpha = 2;
thr = wpbmpen(tree,sigma,alpha)
thr =
 4.5740
% Use wpdencmp for de-noising the signal using the above
% threshold with soft thresholding and keeping the
% approximation.
keepapp = 1;
xd = wpdencmp(tree,'s','nobest',thr,keepapp);
% Plot original and de-noised signals.
figure(1)
subplot(211), plot(x),
title('Original signal')
subplot(212), plot(xd)
title('De-noised signal')
```


\% Example 2: Image de-noising.
\% Load original image.
load noiswom;
nbc = size(map,1);
\% Perform a wavelet packet decomposition of the image \% at level 3 using coif2.
wname $=$ 'coif2'; lev = 3;
tree $=$ wpdec2(X,lev,wname);
\% Estimate the noise standard deviation from the
\% detail coefficients at level 1.
det1 = [wpcoef(tree,2) wpcoef(tree,3) wpcoef(tree,4)];
sigma $=$ median(abs(det1(:)))/0.6745;
\% Use wpbmpen for selecting global threshold
\% for image de-noising.
alpha = 1.1;
thr = wpbmpen(tree,sigma,alpha)

```
thr =
```

38.5125
\% Use wpdencmp for de-noising the image using the above
\% thresholds with soft thresholding and keeping the
\% approximation.
keepapp = 1;
xd = wpdencmp(tree,'s','nobest',thr,keepapp);
\% Plot original and de-noised images.
figure(2)
colormap(pink(nbc));
subplot(221), image(wcodemat(X,nbc))
title('Original image')
subplot(222), image(wcodemat(xd,nbc)) title('De-noised image')

Original image


De-noised image


See Also
wbmpen | wden | wdencmp | wpdencmp

## Purpose Wavelet packet coefficients

## Syntax <br> $X=\operatorname{wpcoef}(T, N)$ <br> X = wpcoef( $T$ )

Description
wpcoef is a one- or two-dimensional wavelet packet analysis function.
$\mathrm{X}=\operatorname{wpcoef}(T, N)$ returns the coefficients associated with the node $N$ of the wavelet packet tree $T$. If $N$ doesn't exist, $\mathrm{X}=[$ ];
$\mathrm{X}=\operatorname{wpcoef}(T)$ is equivalent to $\mathrm{X}=\operatorname{wpcoef}(T, 0)$.
Examples $\quad$ \% The current extension mode is zero-padding (see dwtmode).
\% Load signal.
load noisdopp; x = noisdopp;
figure(1); subplot(211);
plot(x); title('Original signal');
\% Decompose x at depth 3 with db1 wavelet packets
\% using Shannon entropy.
wpt = wpdec(x,3,'db1');
\% Plot wavelet packet tree wpt.
plot(wpt)

\% Read packet $(2,1)$ coefficients.
cfs = wpcoef(wpt,[2 1]);
figure(1); subplot(212);
plot(cfs); title('Packet (2,1) coefficients');
Original signal


Packet $(2,1)$ coefficients


See Also wpcoef | wpdec | wpdec2 | wprcoef
How To . "Reconstructing a Signal Approximation from a Node"

## Purpose

Cut wavelet packet tree

```
Syntax
T = wpcutree(T,L)
T
[T,RN] = wpcutree(T,L)
```

\% Load signal.
load noisdopp; x = noisdopp;
\% Decompose x at depth 3 with db1 wavelet packets
\% using Shannon entropy.
wpt $=$ wpdec (x,3,'db1');
\% Plot wavelet packet tree wpt.
plot(wpt)

\% Cut wavelet packet tree at level 2. nwpt = wpcutree(wpt,2);
\% Plot new wavelet packet tree nwpt. plot (nwpt)


See Also
wpdec | wpdec2

Purpose Wavelet packet decomposition 1-D
Syntax
T = wpdec (X,N,'wname', E, P)
T = wpdec(X,N,'wname')
T = wpdec(X,N,'wname','shannon')
T
Description
wpdec is a one-dimensional wavelet packet analysis function.
T = wpdec (X,N,'wname', E,P) returns a wavelet packet tree $T$ corresponding to the wavelet packet decomposition of the vector X at level N, with a particular wavelet ('wname', see wfilters for more information).
$\mathrm{T}=\operatorname{wpdec}(\mathrm{X}, \mathrm{N}, '$ wname') is equivalent to $\mathrm{T}=$ wpdec(X,N,'wname','shannon').
$E$ is a string containing the type of entropy and $P$ is an optional parameter depending on the value of T (see wentropy for more information).

| Entropy Type <br> Name (E) | Parameter (P) | Comments |
| :--- | :--- | :--- |
| 'shannon' |  | P is not used. |
| 'log energy' |  | P is not used. |
| 'threshold' | $0 \leq \mathrm{P}$ | P is the threshold. |
| 'sure' | $0 \leq \mathrm{P}$ | P is the threshold. |
| 'norm' | $1 \leq \mathrm{P}$ | P is the power. |


| Entropy Type <br> Name (E) | Parameter (P) | Comments |
| :--- | :--- | :--- |
| 'user' | string | P is a string containing the <br> file name of your own entropy <br> function, with a single input <br> X. |
| FunName | No <br> constraints <br> on P | FunName is any other string <br> except those used for the <br> previous Entropy Type Names <br> listed above. <br> FunName contains the file <br> name of your own entropy <br> function, with X as input and <br> P as additional parameter to <br> your entropy function. |

Note The 'user' option is historical and still kept for compatibility, but it is obsoleted by the last option described in the table above. The FunName option do the same as the 'user' option and in addition gives the possibility to pass a parameter to your own entropy function.

The wavelet packet method is a generalization of wavelet decomposition that offers a richer signal analysis. Wavelet packet atoms are waveforms indexed by three naturally interpreted parameters: position and scale as in wavelet decomposition, and frequency.

For a given orthogonal wavelet function, a library of wavelet packets bases is generated. Each of these bases offers a particular way of coding signals, preserving global energy and reconstructing exact features. The wavelet packets can then be used for numerous expansions of a given signal.

Simple and efficient algorithms exist for both wavelet packets decomposition and optimal decomposition selection. Adaptive filtering algorithms with direct applications in optimal signal coding and data compression can then be produced.

In the orthogonal wavelet decomposition procedure, the generic step splits the approximation coefficients into two parts. After splitting we obtain a vector of approximation coefficients and a vector of detail coefficients, both at a coarser scale. The information lost between two successive approximations is captured in the detail coefficients. The next step consists in splitting the new approximation coefficient vector; successive details are never re-analyzed.

In the corresponding wavelet packets situation, each detail coefficient vector is also decomposed into two parts using the same approach as in approximation vector splitting. This offers the richest analysis: the complete binary tree is produced in the one-dimensional case or a quaternary tree in the two-dimensional case.

```
Examples % The current extension mode is zero-padding (see dwtmode).
% Load signal.
load noisdopp; x = noisdopp;
% Decompose x at depth 3 with db1 wavelet packets
% using Shannon entropy.
wpt = wpdec(x,3,'db1','shannon');
% The result is the wavelet packet tree wpt.
% Plot wavelet packet tree (binary tree, or tree of order 2).
plot(wpt)
```



## Algorithms

## References

See Also
wavedec | waveinfo | wenergy | wpdec | wprec

Purpose Wavelet packet decomposition 2-D
Syntax
T = wpdec2(X,N,'wname', E, P)
T = wpdec2(X,N,'wname')
$\mathrm{T}=$ wpdec2(X,N,wnam,'shannon')

## Description

wpdec2 is a two-dimensional wavelet packet analysis function.
T = wpdec2 (X,N, 'wname', E, P) returns a wavelet packet tree T corresponding to the wavelet packet decomposition of the matrix $X$, at level N, with a particular wavelet ('wname', see wfilters for more information).
$\mathrm{T}=$ wpdec2(X,N,'wname') is equivalent to $\mathrm{T}=$ wpdec2(X,N,wnam, 'shannon').
$E$ is a string containing the type of entropy and $P$ is an optional parameter depending on the value of $T$ (see wentropy for more information).

| Entropy Type <br> Name (E) | Parameter (P) | Comments |
| :--- | :--- | :--- |
| 'shannon' |  | P is not used. |
| 'log energy' |  | P is not used. |
| 'threshold' | $0 \leq \mathrm{P}$ | P is the threshold. |
| 'sure' | $0 \leq \mathrm{P}$ | P is the threshold. |
| 'norm' | $1 \leq \mathrm{P}$ | P is the power. |


| Entropy Type <br> Name (E) | Parameter (P) | Comments |
| :--- | :--- | :--- |
| 'user' | string | P is a string containing the <br> file name of your own entropy <br> function, with a single input <br> X. |
| STR | No <br> constraints <br> on P | STR is any other string except <br> those used for the previous <br> Entropy Type Names listed <br> above.STR contains the file <br> name of your own entropy <br> function, with X as input and <br> P as additional parameter to <br> your entropy function. |

Note The 'user' option is historical and still kept for compatibility, but it is obsoleted by the last option described in the preceding table. The FunName option does the same as the 'user' option and in addition, allows you to pass a parameter to your own entropy function.

See wpdec for a more complete description of the wavelet packet decomposition.

Tips

Examples

When X represents an indexed image, X is an $m$-by- $n$ matrix. When X represents a truecolor image, it is an m-by-n-by- 3 array, where each $m$-by-n matrix represents a red, green, or blue color plane concatenated along the third dimension.

For more information on image formats, see the image and imfinfo reference pages.

```
% The current extension mode is zero-padding (see dwtmode).
```

```
% Load image.
load tire
% X contains the loaded image.
% For an image the decomposition is performed using:
t = wpdec2(X,2,'db1');
% The default entropy is shannon.
% Plot wavelet packet tree
% (quarternary tree, or tree of order 4).
plot(t)
```



## Algorithms

## References

The algorithm used for the wavelet packets decomposition follows the same line as the wavelet decomposition process (see dwt2 and wavedec2 for more information).

Coifman, R.R.; M.V. Wickerhauser (1992), "Entropy-based algorithms for best basis selection," IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713-718.

Meyer, Y. (1993), Les ondelettes. Algorithmes et applications, Colin Ed., Paris, 2nd edition. (English translation: Wavelets: Algorithms and Applications, SIAM).

Wickerhauser, M.V. (1991), "INRIA lectures on wavelet packet algorithms," Proceedings ondelettes et paquets d'ondes, 17-21 June, Rocquencourt, France, pp. 31-99.

Wickerhauser, M.V. (1994), Adapted wavelet analysis from theory to software Algorithms, A.K. Peters.

See Also
wavedec2 | waveinfo | wenergy | wpdec | wprec2

## Purpose

De-noising or compression using wavelet packets

## Syntax

```
[XD,TREED,PERFO,PERFL2] =
wpdencmp(X,SORH,N,'wname',CRIT,PAR,
 KEEPAPP)
[XD,TREED,PERFO,PERFL2] = wpdencmp(TREE,SORH,CRIT,PAR,
 KEEPAPP)
```


## Description

wpdencmp is a one- or two-dimensional de-noising and compression
oriented function.
wpdencmp performs a de-noising or compression process of a signal or an image, using wavelet packet. The ideas and the procedures for de-noising and compression using wavelet packet decomposition are the same as those used in the wavelets framework (see wden and wdencmp for more information).
[XD,TREED, PERFO, PERFL2] =
wpdencmp ( $\mathrm{X}, \mathrm{SORH}, \mathrm{N}$, 'wname', CRIT, PAR , KEEPAPP) returns a de-noised or compressed version XD of input signal $X$ (one- or two-dimensional) obtained by wavelet packets coefficients thresholding.

The additional output argument TREED is the wavelet packet best tree decomposition (see besttree for more information) of XD. PERFL2 and PERFO are $L^{2}$ energy recovery and compression scores in percentages.

PERFL2 $=100$ * (vector-norm of WP-cfs of XD / vector-norm of WP-cfs of $X)^{2}$.

If $X$ is a one-dimensional signal and 'wname' an orthogonal wavelet, PERFL2 is reduced to

$$
\frac{100\|X D\|^{2}}{\|X\|^{2}}
$$

SORH ('s'or ' $h$ ') is for soft or hard thresholding (see wthresh for more information).

Wavelet packet decomposition is performed at level $N$ and 'wname ' is a string containing the wavelet name. Best decomposition is performed using entropy criterion defined by string CRIT and parameter PAR (see wentropy for more information). Threshold parameter is also PAR. If KEEPAPP = 1, approximation coefficients cannot be thresholded; otherwise, they can be.
[XD,TREED,PERFO,PERFL2] = wpdencmp(TREE, SORH, CRIT, PAR, KEEPAPP) has the same output arguments, using the same options as above, but obtained directly from the input wavelet packet tree decomposition TREE (see wpdec for more information) of the signal to be de-noised or compressed.

In addition if CRIT = 'nobest' no optimization is done and the current decomposition is thresholded.

```
Examples \% The current extension mode is zero-padding (see dwtmode).
\% Load original signal.
load sumlichr; x = sumlichr;
\% Use wpdencmp for signal compression.
\% Find default values (see ddencmp).
[thr,sorh,keepapp,crit] = ddencmp('cmp','wp',x)
thr =
 0.5193
sorh \(=\)
h
keepapp =
 1
crit =
 threshold
\% De-noise signal using global thresholding with
```

```
% threshold best basis.
[xc,wpt,perf0,perfl2] = ...
wpdencmp(x,sorh,3,'db2',crit,thr,keepapp);
% Using some plotting commands,
% the following figure is generated.
```


\% Load original image.
load sinsin
\% Generate noisy image.
$x=X / 18+r a n d n(s i z e(X))$;
\% Use wpdencmp for image de-noising.
\% Find default values (see ddencmp).
[thr, sorh, keepapp,crit] = ddencmp('den','wp',x)
thr =
4.9685

```
sorh =
h
keepapp =
 1
crit =
sure
% De-noise image using global thresholding with
% SURE best basis.
xd = wpdencmp(x,sorh,3,'sym4',crit,thr,keepapp);
% Using some plotting commands,
% the following figure is generated.
% Generate heavy sine and a noisy version of it.
init = 1000;
[xref,x] = wnoise(5,11,7,init);
% Use wpdencmp for signal de-noising.
n = length(x);
thr = sqrt(2*log(n*log(n)/log(2)));
xwpd = wpdencmp(x,'s',4,'sym4','sure',thr,1);
% Compare with wavelet-based de-noising result.
xwd = wden(x,'rigrsure','s','one',4,'sym4');
```

References Antoniadis, A.; G. Oppenheim, Eds. (1995), Wavelets and statistics, Lecture Notes in Statistics, 103, Springer Verlag.

Coifman, R.R.; M.V. Wickerhauser (1992), "Entropy-based algorithms for best basis selection," IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713-718.

DeVore, R.A.; B. Jawerth, B.J. Lucier (1992), "Image compression through wavelet transform coding," IEEE Trans. on Inf. Theory, vol. 38, No 2, pp. 719-746.

Donoho, D.L. (1993), "Progress in wavelet analysis and WVD: a ten minute tour," in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, pp. 109-128. Frontières Ed.

Donoho, D.L.; I.M. Johnstone (1994), "Ideal spatial adaptation by wavelet shrinkage," Biometrika, vol. 81, pp. 425-455.

Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), "Wavelet shrinkage: asymptopia," Jour. Roy. Stat. Soc., series B, vol. 57 no. 2, pp. 301-369.

See Also besttree | ddencmp | wdencmp | wenergy | wpbmpen | wpdec | wpdec2 | wthresh

Purpose Wavelet packet functions

## Syntax <br> [WPWS, X] = wpfun('wname',NUM,PREC) <br> [WPWS, X] = wpfun('wname',NUM) <br> [WPWS, X] = wpfun('wname',NUM,7)

## Description

wpfun is a wavelet packet analysis function.
[WPWS, X] = wpfun('wname', NUM, PREC) computes the wavelet packets for a wavelet 'wname' (see wfilters for more information), on dyadic intervals of length 2 -PREC.

PREC must be a positive integer. Output matrix WPWS contains the $W$ functions of index from 0 to NUM, stored row-wise as [ $W_{0} ; W_{1} ; \ldots ; W_{\text {NUM }}$ ]. Output vector X is the corresponding common X -grid vector.

```
[WPWS,X] = wpfun('wname',NUM) is equivalent to
[WPWS,X] = wpfun('wname',NUM,7).
```

The computation scheme for wavelet packets generation is easy when using an orthogonal wavelet. We start with the two filters of length $2 N$, denoted $h(n)$ and $g(n)$, corresponding to the wavelet.

Now by induction let us define the following sequence of functions ( $W_{n}(x), n=0,1,2, \ldots$ ) by

$$
\begin{aligned}
& W_{2 n}(x)=\sqrt{2} \sum_{k=0, \ldots, 2 N-1} h(k) W_{n}(2 x-k) \\
& W_{2 n+1}(x)=\sqrt{2} \sum_{k=0, \ldots, 2 N-1} g(k) W_{n}(2 x-k)
\end{aligned}
$$

where $W_{0}(x)=\varphi(x)$ is the scaling function and $W_{1}(x)=\Psi(x)$ is the wavelet function.

For example for the Haar wavelet we have

$$
N=1, h(0)=h(1)=\frac{1}{\sqrt{2}}
$$

and

$$
g(0)=-g(1)=\frac{1}{\sqrt{2}}
$$

The equations become

$$
W_{2 n}(x)=W_{n}(2 x)+W_{n}(2 x-1)
$$

and

$$
\left(W_{2 n+1}(x)=W_{n}(2 x)-W_{n}(2 x-1)\right)
$$

$W_{0}(x)=\varphi(x)$ is the haar scaling function and $W_{1}(x)=\Psi(x)$ is the haar wavelet, both supported in $[0,1]$.

Then we can obtain $W_{2 n}$ by adding two $1 / 2$-scaled versions of $W_{n}$ with distinct supports $[0,1 / 2]$ and $[1 / 2,1]$, and obtain $W_{2 n+1}$ by subtracting the same versions of $W_{n}$.
Starting from more regular original wavelets, using a similar construction, we obtain smoothed versions of this system of $W$-functions, all with support in the interval [0, 2N-1].

## Examples

```
% Compute the db2 Wn functions for n = 0 to 7, generating
% the db2 wavelet packets.
[wp,x] = wpfun('db2',7);
% Using some plotting commands,
% the following figure is generated.
```



## References

Coifman, R.R.; M.V. Wickerhauser (1992), "Entropy-based Algorithms for best basis selection," IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713-718.

Meyer, Y. (1993), Les ondelettes. Algorithmes et applications, Colin Ed., Paris, 2nd edition. (English translation: Wavelets: Algorithms and applications, SIAM).
Wickerhauser, M.V. (1991), "INRIA lectures on wavelet packet algorithms," Proceedings ondelettes et paquets d'ondes, 17-21 June, Rocquencourt, France, pp. 31-99.

Wickerhauser, M.V. (1994), Adapted wavelet analysis from theory to software algorithms, A.K. Peters.

## See Also

```
wavefun | waveinfo
```


## Purpose

Recompose wavelet packet
Syntax

```
T = wpjoin(T,N)
[T,X] = wpjoin(T,N)
T = wpjoin(T)
T = wpjoin(T,0)
[T,X] = wpjoin(T)
[T,X] = wpjoin(T,0)
```


## Description

wpjoin is a one- or two-dimensional wavelet packet analysis function.
wpjoin updates the wavelet packet tree after the recomposition of a node.

The nodes are numbered from left to right and from top to bottom. The root index is 0 .
$\mathrm{T}=\mathrm{wpjoin}(T, \mathrm{~N})$ returns the modified wavelet packet tree T corresponding to a recomposition of the node N .
$[\mathrm{T}, \mathrm{X}]=$ wpjoin $(T, \mathrm{~N})$ also returns the coefficients of the node.
$\mathrm{T}=\mathrm{wpjoin}(T)$ is equivalent to $\mathrm{T}=\mathrm{wpjoin}(T, 0)$.
$[T, X]=\operatorname{wpjoin}(T)$ is equivalent to $[T, X]=\operatorname{wpjoin}(T, 0)$.

## Examples

```
% Load signal.
```

load noisdopp; x = noisdopp;
\% Decompose x at depth 3 with db1 wavelet packets.
wpt = wpdec(x,3,'db1');
\% Plot wavelet packet tree wpt.
plot(wpt)


See Also
wpdec | wpdec2 | wpsplt

## Purpose Reconstruct wavelet packet coefficients

```
Syntax }\quad\textrm{X}=\operatorname{wprcoef}(T,N
X = wprcoef(T)
X = wprcoef(T,0)
```

Description

Examples

```
% The current extension mode is zero-padding (see dwtmode)
```

\% Load signal.
load noisdopp; x = noisdopp;
figure(1); subplot(211);
plot(x); title('Original signal');
\% Decompose x at depth 3 with db1 wavelet packets
\% using Shannon entropy.
t = wpdec(x,3,'db1','shannon');
\% Plot wavelet packet tree.
plot(t)

\% Reconstruct packet (2,1).
rcfs $=\operatorname{wprcoef}\left(t,\left[\begin{array}{ll}2 & 1\end{array}\right]\right.$;
figure(1); subplot(212);
plot(rcfs); title('Reconstructed packet (2,1)');


[^13]Purpose Wavelet packet reconstruction 1-D

```
Syntax X = wprec (T)
wprec(wpdec(X,'wname'))
```

Description wprec is a one-dimensional wavelet packet analysis function.
$\mathrm{X}=\operatorname{wprec}(T)$ returns the reconstructed vector X corresponding to a wavelet packet tree $T$.
wprec is the inverse function of wpdec in the sense that the abstract statement wprec (wpdec (X, 'wname')) would give back X.

## See Also <br> wpdec | wpdec2 | wpjoin | wprec2 | wpsplt

Purpose Wavelet packet reconstruction 2-D
Syntax X = wprec2( $T$ )wprec2(wpdec2(X,'wname'))
Description wprec2 is a two-dimensional wavelet packet analysis function.$\mathrm{X}=$ wprec2 $(T)$ returns the reconstructed matrix X corresponding to awavelet packet tree $T$.wprec2 is the inverse function of wpdec2 in the sense that the abstractstatement wprec2(wpdec2(X,'wname')) would give back X.
Tips If $T$ is obtained from an indexed image analysis or a truecolor image analysis, X is an m-by-n matrix or an m-by-n-by-3 array, respectively.
For more information on image formats, see the image and imfinfo reference pages.
See Also wpdec | wpdec2 | wpjoin | wprec | wpsplt

## Purpose Wavelet packet spectrum

```
Syntax
[SPEC,TIMES,FREQ] = wpspectrum(WPT,Fs)
[...] = wpspectrum(WPT,Fs,'plot')
[...,TNFO] = wpspectrum(...)
```


## Description

## Input <br> Arguments

## Output Arguments

[SPEC,TIMES,FREQ] = wpspectrum(WPT,Fs) returns a matrix of wavelet packet spectrum estimates, SPEC, for the binary wavelet packet tree object, WPT. Fs is the sampling frequency in Hertz. SPEC is a $2^{J}$-by- $N$ matrix where $J$ is the level of the wavelet packet transform and $N$ is the length of the time series. TIMES is a 1 -by- $N$ vector of times and FREQ is a $1-$ by- $2^{J}$ vector of frequencies.
[...] = wpspectrum(WPT,Fs,'plot') displays the wavelet packet spectrum.
[...,TNFO] = wpspectrum (...) returns the terminal nodes of the wavelet packet tree in frequency order.

## WPT

WPT is a binary wavelet packet tree of class wptree.

## Fs

Sampling frequency in Hertz as a scalar of class double.

## Default: 1

## plot

The string 'plot' displays the wavelet packet spectrum. Enter 'plot' after Fs to produce a plot of the wavelet packet spectrum.

## SPEC

Wavelet packet spectrum. SPEC is a $2^{J}$-by- $N$ matrix where $J$ is the level of the wavelet packet transform and $N$ is the length of node 0 in the wavelet packet tree object.

The frequency spacing between the rows of SPEC is $\mathrm{Fs} / 2^{J+1}$.

## TIMES

Time vector. TIMES is a vector of times in seconds equal in length to node 0 of the wavelet packet tree object. The time spacing between elements is $1 / F s$.

## FREQ

Frequency vector. FREQ is a vector of frequencies of length $2^{J}$ where $J$ is the level of the wavelet packet tree object. The frequency spacing in FREQ is $F s / 2^{J+1}$.

## TNFO

Terminal nodes. TNFO is a vector of the terminal nodes of the wavelet packet tree object in frequency order.

## Definitions Wavelet Packet Spectrum

The wavelet packet spectrum contains the absolute values of the coefficients from the frequency-ordered terminal nodes of the input binary wavelet packet tree. The terminal nodes provide the finest level of frequency resolution in the wavelet packet transform. If $J$ denotes the level of the wavelet packet transform and $F s$ is the sampling frequency, the terminal nodes approximate bandpass filters of the form:

$$
\left[\frac{n F s}{2^{J+1}}, \frac{(n+1) F s}{2^{J+1}}\right) \quad n=0,1,2,3, \ldots 2^{J}-1
$$

At the terminal level of the wavelet packet tree, the transform divides the interval from 0 to the Nyquist frequency into bands of approximate width $\mathrm{Fs} / 2^{J+1}$.

## Examples <br> Wavelet packet spectrum for signal consisting of two sinusoids with

 disjoint support:```
fs = 500;
t = 0:1/fs:4;
y = sin(32*pi*t).*(t<2) + sin(128*pi*t).*(t>=2);
subplot(2,1,1);
plot(t,y);
axis tight
title('Analyzed Signal');
% Wavelet packet spectrum
level = 6;
wpt = wpdec(y,level,'sym6');
subplot(2,1,2);
[S,T,F] = wpspectrum(wpt,fs,'plot');
```

Wavelet packet spectrum of chirp:

```
fs = 1000;
t = 0:1/fs:2;
% create chirp signal
y = sin(256*pi*t.^2);
% Plot the analyzed signal
subplot(2,1,1);
plot(t,y);
axis tight
title('Analyzed Signal');
% Wavelet packet spectrum
level = 6;
wpt = wpdec(y,level,'sym8');
subplot(2,1,2);
[S,T,F] = wpspectrum(wpt,fs,'plot');
```


Algorithms

References

See Also otnodes I wpdec
How To . "Wavelet Packet Spectrum"
wpspectrum computes the wavelet packet spectrum as follows:

- Extract the wavelet packet coefficients corresponding to the terminal nodes. Take the absolute value of the coefficients.
- Order the wavelet packet coefficients by frequency ordering.
- Determine the time extent on the original time axis corresponding to each wavelet packet coefficient. Repeat each wavelet packet coefficient to fill in the time gaps between neighboring wavelet packet coefficients and create a vector equal in length to node 0 of the wavelet packet tree object.

Wickerhauser, M.V. Lectures on Wavelet Packet Algorithms, Technical Report, Washington University, Department of Mathematics, 1992.

Purpose Split (decompose) wavelet packet

```
Syntax
T = wpsplt( \(T, \mathrm{~N}\) )
[T,cA, cD] = wpsplt(T,N)
[T, cA,cH,cV,cD] = wpsplt(T,N)
```


Description

Examples

```
% The current extension mode is zero-padding (see dwtmode).
% Load signal.
load noisdopp;
x = noisdopp;
% Decompose x at depth 3 with db1 wavelet packets.
wpt = wpdec(x,3,'db1');
% Plot wavelet packet tree wpt.
plot(wpt)
```


\% Decompose packet $(3,0)$.
wpt = wpsplt(wpt,[30]);
\% or equivalently wpsplt(wpt,7).
\% Plot wavelet packet tree wpt.
plot(wpt)

See Also
wavedec | wavedec2 | wpdec | wpdec2 | wpjoin

Purpose Wavelet packet coefficients thresholding

Syntax
 NT = wpthcoef(T, KEEPAPP,SORH,THR)

Description
wpthcoef is a one- or two-dimensional de-noising and compression utility.

NT = wpthcoef(T, KEEPAPP, SORH, THR) returns a new wavelet packet tree NT obtained from the wavelet packet tree T by coefficients thresholding.

If KEEPAPP = 1, approximation coefficients are not thresholded; otherwise, they can be thresholded.

If SORH = 's', soft thresholding is applied; if SORH = 'h', hard thresholding is applied (see wthresh for more information).

THR is the threshold value.
See Also wpdec | wpdec2 | wpdencmp | wthresh
Purpose WPTREE constructor
Syntax T = wptree(ORDER, DEPTH, X,WNAME,ENT_TYPE,PARAMETER)T = wptree(ORDER,DEPTH,X,WNAME)
T = wptree(ORDER,DEPTH,X,WNAME,'shannon')
T = wptree(ORDER,DEPTH,X,WNAME,ENT_TYPE,ENT_PAR,USERDATA)

Description

T = wptree(ORDER, DEPTH, X, WNAME,ENT_TYPE, PARAMETER) returns a complete wavelet packet tree T.
ORDER is an integer representing the order of the tree (the number of "children" of each non terminal node). ORDER must be equal to 2 or 4 .
If ORDER $=2, T$ is a WPTREE object corresponding to a wavelet packet decomposition of the vector (signal) X, at level DEPTH with a particular wavelet WNAME.
If ORDER $=4, T$ is a WPTREE object corresponding to a wavelet packet decomposition of the matrix (image) X, at level DEPTH with a particular wavelet WNAME.
ENT_TYPE is a string containing the entropy type and ENT_PAR is an optional parameter used for entropy computation (see wentropy, wpdec, or wpdec2 for more information).
$\mathrm{T}=$ wptree (ORDER, DEPTH, X , WNAME) is equivalent to $\mathrm{T}=$ wptree(ORDER, DEPTH, X, WNAME, 'shannon')
With T = wptree(ORDER, DEPTH, X, WNAME,ENT_TYPE,ENT_PAR,USERDATA) you may set a userdata field.
The function wptree returns a WPTREE object.
For more information on object fields, see the get function or type

```
help wptree/get
```

Class WPTREE (Parent class: DTREE)

Fields

'dtree'	DTREE parent object
'wavInfo'	Structure (wavelet information)
'entInfo'	Structure (entropy information)
The wavelet information structure, 'wavInfo', contains	
'wavName'	Wavelet name
'Lo_D'	Low Decomposition filter
'Hi_D'	High Decomposition filter
'Lo_R'	Low Reconstruction filter
'Hi_R'	High Reconstruction filter
The entropy information structure, 'entInfo', contains	
'entName'	Entropy name
'entPar'	Entropy parameter

Fields from the DTREE parent object:
'allNI'
All nodes information
'allNI ' is an array of size nbnode by 5 , which contains

ind	Index
size	Size of data
ent	Entropy
ento	Optimal entropy

Each line is built based on the following scheme:

Examples

\% Create a wavelet packet tree.
$x=\operatorname{rand}(1,512)$;
$\mathrm{t}=$ wptree $\left(2,3, \mathrm{x}, \mathrm{'db3}{ }^{\prime}\right)$;
t = wpjoin(t, [4;5]);
\% Plot tree t4.
plot(t);
\% Click the node $(3,0)$, (see the plot function).

data for node: (7) or $(3,0)$.

See Also dtree | ntree

wpviewcf

Purpose

Plot wavelet packets colored coefficients

Syntax

Description
wpviewcf(T, CMODE)
wpviewcf(T, CMODE, NBCOL)
wpviewcf(T, CMODE) plots the colored coefficients for the terminal nodes of the tree T.
T is a wavelet packet tree and CMODE is an integer, which represents the color mode. The color modes are listed in the table below.

Color Mode	Description
1	Frequency order - Global coloration - Absolute values
2	Frequency order - By level - Absolute values
3	Frequency order - Global coloration - Values
4	Frequency order - By level coloration - Values
5	Natural order - Global coloration - Absolute values
6	Natural order - By level - Absolute values
7	Natural order - Global coloration - Values
8	Natural order - By level coloration - Values

wpviewcf(T, CMODE, NBCOL) uses NBCOL colors.

Examples

```
% Create a wavelet packet tree.
x = sin(8*pi*[0:0.005:1]);
t = wpdec(x,3,'db1');
% Plot tree t.
% Click the node (3,0), (see the plot function)
plot(t);
```


\% Plot the colored wavelet packet coefficients. wpviewcf(t,1);

Frequency Order: Global + abs

See Also
wpdec

Purpose
 Reconstruct single branch from 1-D wavelet coefficients

```
Syntax \(\quad \mathrm{X}=\) wrcoef('type', C,L,'wname', N )
X = wrcoef('type', C,L,Lo_R,Hi_R,N)
X = wrcoef('type', C,L,'wname')
X = wrcoef('type',C,L,Lo_R,Hi_R)
```


Description

Examples

\% from the wavelet decomposition structure [c,l]. a5 = wrcoef('a',c,l,'sym4',5);
\% Using some plotting commands,
\% the following figure is generated.
Original signal s.

See Also appcoef | detcoef | wavedec

Purpose
 Reconstruct single branch from 2-D wavelet coefficients

Syntax
Description

Tips

X = wrcoef2('type', C,S,'wname',N)
X = wrcoef2('type',C,S,Lo_R,Hi_R,N)
X = wrcoef2('type', C,S,'wname')
X = wrcoef2('type',C,S,Lo_R,Hi_R)
wrcoef2 is a two-dimensional wavelet analysis function. wrcoef2 reconstructs the coefficients of an image.

X = wrcoef2('type', C,S,'wname',N) computes the matrix of reconstructed coefficients of level N , based on the wavelet decomposition structure [C,S] (see wavedec2 for more information).
'wname' is a string containing the name of the wavelet (see wfilters for more information). If 'type ' $=$ ' a^{\prime}, approximation coefficients are reconstructed; otherwise if 'type' = 'h' ('v' or 'd', respectively), horizontal (vertical or diagonal, respectively) detail coefficients are reconstructed.

Level N must be an integer such that $0 \leq N \leq \operatorname{size}(S, 1)-2$ if 'type' $=$ 'a' and such that $1 \leq N \leq \operatorname{size}(S, 1)-2$ if 'type' = 'h', 'v', or 'd'.

Instead of giving the wavelet name, you can give the filters.
For X = wrcoef2('type', C,S,Lo_R,Hi_R,N), Lo_R is the reconstruction low-pass filter and Hi_R is the reconstruction high-pass filter.

X = wrcoef2('type', C,S,'wname') or X = wrcoef2('type', C,S,Lo_R,Hi_R) reconstruct coefficients of maximum level $N=\operatorname{size}(S, 1)-2$.

If C and S are obtained from an indexed image analysis (respectively a truecolor image analysis) then X is an m-by- n matrix (respectively an m-by-n-by-3 array).

For more information on image formats, see the reference pages of image and imfinfo functions.

```
Examples % The current extension mode is zero-padding (see dwtmode).
% Load an image.
load woman;
% X contains the loaded image.
% Perform decomposition at level 2
% of X using sym5.
[c,s] = wavedec2(X,2,'sym5');
% Reconstruct approximations at
% levels 1 and 2, from the wavelet
% decomposition structure [c,s].
a1 = wrcoef2('a',c,s,'sym5',1);
a2 = wrcoef2('a',c,s,'sym5',2);
% Reconstruct details at level 2,
% from the wavelet decomposition
% structure [c,s].
% 'h' is for horizontal,
% 'v' is for vertical,
% 'd' is for diagonal.
hd2 = wrcoef2('h',c,s,'sym5',2);
vd2 = wrcoef2('v',c,s,'sym5',2);
dd2 = wrcoef2('d',c,s,'sym5',2);
% All these images are of same size sX.
sX = size(X)
sX =
    256 256
sa1 = size(a1)
sa1 =
    256 256
```

```
shd2 = size(hd2)
shd2 =
    256 256
```

See Also appcoef2 | detcoef2 | wavedec2
Purpose Flip vector
Syntax Y = wrev(X)
Description wrev is a general utility.
$Y=w r e v(X)$ reverses the vector X.
Examples v = [1 2 3]; wrev(v) wrev(v')
See Also fliplr | flipud

Purpose Write values in WPTREE fields

```
Syntax
T = write(T,'cfs',NODE,COEFS)
T = write(T,'cfs',N1,CFS1,'cfs',N2,CFS2, ...)
```

T = write(T, 'cfs', NODE, COEFS) writes coefficients for the terminal node NODE.

T = write(T,'cfs',N1,CFS1,'cfs',N2,CFS2, ...) writes coefficients CFS1, CFS2, ... for the terminal nodes N1, N2,

Caution The coefficients values must have the suitable size. You can use $S=\operatorname{read}(T, ' s i z e s ', N O D E)$ or $S=r e a d(T, ' s i z e s ',[N 1 ; N 2 ;$...]) in order to get those sizes.

Examples \%Create a wavelet packet tree. load noisdopp; x = noisdopp;
t = wpdec(x, $\left.3,{ }^{\prime} \mathrm{db}^{\prime}\right)$);
$\mathrm{t}=\mathrm{wpjoin}(\mathrm{t},[4 ; 5])$;
\% Plot tree t and click the node $(0,0)$ (see the plot function). plot(t);

\% Write values.
sNod $=$ read(t,'sizes', $[4,5,7])$;
cfs4 = zeros(sNod(1,:));
cfs5 $=$ zeros(sNod(2,:));
cfs7 $=$ zeros(sNod(3,:));
t = write(t,'cfs',4,cfs4,'cfs',5,cfs5,'cfs',7,cfs7);
\% Plot tree t and click the node $(0,0)$ (see the plot function). plot(t)

write

See Also disp | get | read | set

Purpose
 Syntax
 Description

S = abs(coefs.*coefs); SC = 100*S./sum(S(:))
When TYPEPLOT is equal to 'image', a scaled image of scalogram is displayed. When TYPEPLOT is equal to 'contour', a contour representation of scalogram is displayed. Otherwise, the scalogram is returned without plot representation.

SC = wscalogram(TYPEPLOT,COEFS, 'PropName1',PropVal1,...) allows you to modify some properties. The valid choices for PropName are:

'scales'	Scales used for the CWT.
'ydata'	Signal used for the CWT.
'xdata'	x values corresponding to the signal values.
'power'	Positive real value. Default value is zero.

If power > 0, coefficients are first normalized
coefs(k,:) = coefs(k,:)/(scales(k)^power)
and then the scalogram is computed as explained above.

Examples \% Compute signal s
 t = linspace(-1,1,512);

```
s = 1-abs(t);
% Plot signal s
figure;
plot(s), axis tight
```



```
\% Compute coefficients COEFS using cwt COEFS = cwt(s,1:32,'cgau4');
\% Compute and plot the scalogram (image option) figure;
SC = wscalogram('image', COEFS);
```


\% Compute and plot the scalogram (contour option) figure;
SC = wscalogram('contour', COEFS);

See Also
cwt

Purpose WTBO constructor

Syntax \quad| OBJ | $=$ wtbo |
| ---: | :--- |
| OBJ | $=$ wtbo (USERDATA) |

Description
OBJ = wtbo returns a WTBO object. Any object in the Wavelet Toolbox software is parented by a WTBO object.

With OBJ = wtbo(USERDATA) you can set a userdata field.
Class WTBO (Parent class: none)

Fields
wtboInfo
ud

Object information (not used in the current version of the toolbox)

Userdata field

Purpose Wavelet Toolbox manager

Syntax

Description
wtbxmngr(OPTION)
V = wtbxmngr('version')
wtbxmngr or wtbxmngr('version') displays the current version of Wavelet Toolbox software.
wtbxmngr(OPTION) sets a toolbox option. Available options are

Option	Description
'LargeFonts'	Sets the size of future-created figures to use large fonts.
'DefaultSize'	Restores the default figure size for future- created figures.
'FigRatio'	Returns the current figure ratio value.
'FigRatio' , ratio	Changes the size of future-created figures by multiplying the default size by the specified
	ratio, where ratio must be between 0.75 and
	1.25.

$V=$ wtbxmngr('version') saves the current version of the toolbox to variable V.

Examples

```
wtbxmngr('version')
** Wavelet Toolbox Version: V3.1 **
**************************************
wtbxmngr('FigRatio') % Display the current figure ratio
wtbxmngr('FigRatio',1.25) % Set the figure ratio to 1.25
wtbxmngr('FigRatio') % Display the current figure ratio
wtbxmngr('DefaultSize') % Return to the default figure ratio
```


wtbxmngr

Purpose Wavelet coefficient thresholding 1-D

```
Syntax NC = wthcoef('d',C,L,N,P)
NC = wthcoef('d',C,L,N)
NC = wthcoef('a',C,L)
NC = wthcoef('t',C,L,N,T,SORH)
```


Description

See Also wavedec | wthresh

```
Purpose Wavelet coefficient thresholding 2-D
Syntax \(\quad N C=\) wthcoef2('type' \(, C, S, N, T\), SORH \()\)
NC = wthcoef2('type', C,S,N)
NC = wthcoef2('a', C, S)
NC = wthcoef2('t', C, S,N,T,SORH)
```


Description

wthcoef2 is a two-dimensional de-noising and compression oriented function.

For 'type' = 'h' ('v' or 'd'), NC = wthcoef2('type', C, S, N, T, SORH) returns the horizontal (vertical or diagonal, respectively) coefficients obtained from the wavelet decomposition structure [C,S] (see wavedec2 for more information), by soft (if SORH ='s') or hard (if SORH =' h ') thresholding defined in vectors N and T . N contains the detail levels to be thresholded and T the corresponding thresholds. N and T must be of the same length. The vector N must be such that $1 \leq N(i) \leq \operatorname{size}(S, 1)-2$.

For 'type' = 'h' ('v' or 'd'), NC = wthcoef2('type', C,S,N) returns the horizontal (vertical or diagonal, respectively) coefficients obtained from [C, S] by setting all the coefficients of detail levels defined in N to zero.

NC = wthcoef2('a', C, S) returns the coefficients obtained by setting approximation coefficients to zero.
$N C=$ wthcoef2('t', C, S,N,T,SORH) returns the detail coefficients obtained from the wavelet decomposition structure [C, S] by soft (if SORH ='s') or hard (if SORH =' h ') thresholding (see wthresh for more information) defined in vectors N and T . N contains the detail levels to be thresholded and T the corresponding thresholds which are applied in the three detail orientations. N and T must be of the same length.
[NC, S] is the modified wavelet decomposition structure.

[^14]
Purpose Soft or hard thresholding

```
Syntax }\quadY=\mathrm{ wthresh(X,SORH,T)
Y = wthresh(X,'s',T)
Y = wthresh(X,'h',T)
```


Description

$Y=w t h r e s h(X, S O R H, T)$ returns the soft (if SORH = 's') or hard (if SORH = ' h ') thresholding of the input vector or matrix $X . T$ is the threshold value.
$\mathrm{Y}=\mathrm{wthresh}\left(\mathrm{X}, \mathrm{s}^{\prime}, \mathrm{T}\right)$ returns $Y=\operatorname{sign}(X) \cdot(|X|-T)_{+}$, soft thresholding is wavelet shrinkage $\left((\mathrm{x})_{+}=0\right.$ if $\mathrm{x}<0$; $(\mathrm{x})_{+}=\mathrm{x}$, if $\left.\mathrm{x} \geq 0\right)$.
$\mathrm{Y}=$ wthresh $\left(\mathrm{X}, \mathrm{h}^{\prime}, \mathrm{T}\right)$ returns $Y=X \cdot 1_{(|X|>T)}$, hard thresholding is cruder.

Examples \quad G Generate signal and set threshold. y = linspace(-1,1,100); thr = 0.4;
\% Perform hard thresholding.
ythard = wthresh(y,'h',thr);
\% Perform soft thresholding. ytsoft = wthresh(y,'s',thr);
\% Using some plotting commands, \% the following figure is generated.

See Also
wden | wdencmp | wpdencmp

Purpose Threshold settings manager

Syntax THR = wthrmngr(OPTION, METHOD, VARARGIN)
Description
THR = wthrmngr(OPTION, METHOD, VARARGIN) returns a global threshold or level dependent thresholds depending on OPTION. The inputs, VARARGIN, depend on the OPTION and METHOD values.

This file returns the thresholds used throughout the Wavelet Toolbox software for de-noising and compression tools (command line files or GUI tools).

Valid options for the METHOD parameter are listed in the table below.

METHOD	Description
'scarcehi'	See wdcbm or wdcbm2 when used with 'high' predefined value of parameter M.
'scarceme'	See wdcbm or wdcbm2 when used with 'medium' predefined value of parameter M.
'scarcelo'	See wdcbm or wdcbm2 when used with 'low' predefined value of parameter M.
'sqtwolog'	See 'sqtwolog' option in thselect, and see also wden.
'sqtwologuwn'	See 'sqtwolog' option in thselect, and see also wden when used with 'sln' option.
'sqtwologswn'	See 'sqtwolog' option in thselect, and see also wden when used with 'mln' option.
'rigsure'	See 'rigsure' option in thselect, and see also wden.
'heursure'	See 'heursure' option in thselect, and see also wden.
'minimaxi'	See 'minimaxi' option in thselect, and see also wden.

METHOD	Description
'penalhi'	See wbmpen or wpbmpen when used with 'high ' value of parameter ALPHA.
'penalme'	See wbmpen or wpbmpen when used with 'medium' value of parameter ALPHA.
'penallo'	See wbmpen or wpbmpen when used with 'low' value of parameter ALPHA.
'rem_n0'	This option returns a threshold close to 0. A typical THR value is median(abs (coefficients)).
'bal_sn'	This option returns a threshold such that the percentages of retained energy and number of zeros are the same.
'sqrtbal_sn'	This option returns a threshold equal to the square root of the value such that the percentages of retained energy and number of zeros are the same.

Discrete Wavelet 1-D Options

For 1-D wavelet transforms, the expansion coefficients are in the vector C and the lengths of the expansion coefficient vectors are stored in L.

Compression using a global threshold.

X is the signal to be compressed and [C, L] is the wavelet decomposition structure of the signal to be compressed.

THR = wthrmngr('dw1dcompGBL','rem_n0', X)
THR = wthrmngr('dw1dcompGBL','bal_sn',X)

Compression using level dependent thresholds.

X is the signal to be compressed and [C, L] is the wavelet decomposition structure of the signal to be compressed.

ALFA is a sparsity parameter (see wdcbm for more information).

```
THR = wthrmngr('dw1dcompLVL','scarcehi',C,L,ALFA)
    ALFA must be such that 2.5 < ALFA < 10
THR = wthrmngr('dw1dcompLVL','scarceme',C,L,ALFA)
    ALFA must be such that 1.5 < ALFA < 2.5
THR = wthrmngr('dw1dcompLVL','scarcelo',C,L,ALFA)
    ALFA must be such that 1 < ALFA < 2
```


De-noising using level dependent thresholds.

$[\mathrm{C}, \mathrm{L}]$ is the wavelet decomposition structure of the signal to be de-noised, SCAL defines the multiplicative threshold rescaling (see wden for more information) and ALFA is a sparsity parameter (see wbmpen for more information).

```
THR = wthrmngr('dw1ddenoLVL','sqtwolog',C,L,SCAL)
THR = wthrmngr('dw1ddenoLVL','rigrsure',C,L,SCAL)
THR = wthrmngr('dw1ddenoLVL','heursure',C,L,SCAL)
THR = wthrmngr('dw1ddenoLVL','minimaxi',C,L,SCAL)
THR = wthrmngr('dw1ddenoLVL','penalhi',C,L,ALFA)
    ALFA must be such that 2.5 < ALFA < 10
THR = wthrmngr('dw1ddenoLVL','penalme',C,L,ALFA)
    ALFA must be such that 1.5 < ALFA < 2.5
THR = wthrmngr('dw1ddenoLVL','penallo',C,L,ALFA)
    ALFA must be such that 1 < ALFA < 2
```


Discrete Stationary Wavelet 1-D Options

De-noising using level dependent thresholds.

SWTDEC is the stationary wavelet decomposition structure of the signal to be de-noised, SCAL defines the multiplicative threshold rescaling (see wden for more information) and ALFA is a sparsity parameter (see wbmpen for more information).

THR = wthrmngr('sw1ddenoLVL', METHOD, SWTDEC, SCAL)
THR = wthrmngr('sw1ddenoLVL', METHOD, SWTDEC, ALFA)
The options for METHOD are the same as in the 'dw1ddenoLVL' case.

Discrete Wavelet 2-D Options

For 2-D wavelet transforms, the expansion coefficients are in the vector C and the size of the coefficient matrices at each level is stored in S.

Compression using a global threshold.

X is the image to be compressed and [C, S] is the wavelet decomposition structure of the image to be compressed.

THR = wthrmngr('dw2dcompGBL','rem_n0',X)
THR = wthrmngr('dw2dcompGBL','bal_sn', C,S)
THR = wthrmngr('dw2dcompGBL','sqrtbal_sn', C,S)

Compression using level dependent thresholds.

X is the image to be compressed and [C, S] is the wavelet decomposition structure of the image to be compressed. ALFA is a sparsity parameter (see wdcbm2 for more information).

```
THR = wthrmngr('dw2dcompLVL','scarcehi',C,S,ALFA)
    ALFA must be such that 2.5 < ALFA < 10
THR = wthrmngr('dw2dcompLVL','scarceme',C,S,ALFA)
    ALFA must be such that 1.5 < ALFA < 2.5
THR = wthrmngr('dw2dcompLVL','scarcelo',C,S,ALFA)
    ALFA must be such that 1 < ALFA < 2
```


De-noising using level dependent thresholds.

$[\mathrm{C}, \mathrm{S}$] is the wavelet decomposition structure of the image to be de-noised, SCAL defines the multiplicative threshold rescaling (see wden for more information) and ALFA is a sparsity parameter (see wbmpen for more information).

```
THR = wthrmngr('dw2ddenoLVL','penalhi',C,S,ALFA)
    ALFA must be such that 2.5 < ALFA < 10
THR = wthrmngr('dw2ddenoLVL','penalme',C,S,ALFA)
    ALFA must be such that 1.5 < ALFA < 2.5
THR = wthrmngr('dw2ddenoLVL','penallo',C,S,ALFA)
    ALFA must be such that 1 < ALFA < 2
THR = wthrmngr('dw2ddenoLVL','sqtwolog',C,S,SCAL)
THR = wthrmngr('dw2ddenoLVL','sqrtbal_sn',C,S)
```


Discrete Stationary Wavelet 2-D Options

De-noising using level dependent thresholds.

SWTDEC is the stationary wavelet decomposition structure of the image to be de-noised, SCAL defines the multiplicative threshold rescaling (see wden for more information) and ALFA is a sparsity parameter (see wbmpen for more information).

THR = wthrmngr('sw2ddenoLVL',METHOD,SWTDEC,SCAL)
THR = wthrmngr('sw2ddenoLVL', METHOD, SWTDEC, ALFA)
The options for METHOD are the same as in the 'dw2ddenoLVL' case.

Discrete Wavelet Packet 1-D Options

Compression using a global threshold.

X is the signal to be compressed and WPT is the wavelet packet decomposition structure of the signal to be compressed.

```
THR = wthrmngr('wp1dcompGBL','bal_sn',WPT)
THR = wthrmngr('wp1dcompGBL','rem_nO',X)
```


De-noising using a global threshold.

WPT is the wavelet packet decomposition structure of the signal to be de-noised.

```
THR = wthrmngr('wp1ddenoGBL','sqtwologuwn',WPT)
THR = wthrmngr('wp1ddenoGBL','sqtwologswn',WPT)
THR = wthrmngr('wp1ddenoGBL','bal_sn',WPT)
THR = wthrmngr('wp1ddenoGBL','penalhi',WPT)
    see wbmpen with ALFA = 6.25
THR = wthrmngr('wp1ddenoGBL','penalme',WPT)
    see wbmpen with ALFA = 2
THR = wthrmngr('wp1ddenoGBL','penallo',WPT)
    see wbmpen with ALFA = 1.5
```


Discrete Wavelet Packet 2-D Options

Compression using a global threshold.

X is the image to be compressed and WPT is the wavelet packet decomposition structure of the image to be compressed.

THR = wthrmngr('wp2dcompGBL','bal_sn', WPT)
THR = wthrmngr('wp2dcompGBL','rem_nO',X)
THR = wthrmngr('wp2dcompGBL','sqrtbal_sn',WPT)

De-noising using a global threshold.

WPT is the wavelet packet decomposition structure of the image to be de-noised.

```
THR = wthrmngr('wp2ddenoGBL','sqtwologuwn',WPT)
THR = wthrmngr('wp2ddenoGBL','sqtwologswn',WPT)
THR = wthrmngr('wp2ddenoGBL','sqrtbal_sn',WPT)
THR = wthrmngr('wp2ddenoGBL','penalhi',WPT)
    see wbmpen with ALFA = 6.25
THR = wthrmngr('wp2ddenoGBL','penalme',WPT)
    see wbmpen with ALFA = 2
THR = wthrmngr('wp2ddenoGBL','penallo',WPT)
    see wbmpen with ALFA = 1.5
```

Examples Stationary wavelet transform (SWT) denoising with a threshold based on the finest scale detail coefficients and level-dependent thresholds.

Use wthrmngr and wthresh.

```
load noisbloc
% SWT to level 5 with Haar wavelet
swc = swt(noisbloc,5,'db1');
% Make a copy of the transform coefficients
SWC = swc;
% Threshold based on finest scale detail coefficients
ThreshSL = wthrmngr('sw1ddenoLVL','sqtwolog',swc,'sln');
% Level dependent thresholds
ThreshML = wthrmngr('sw1ddenoLVL','sqtwolog',swc,'mln');
```

```
% Threshold SWT coefficients using hard thresholding
% based on a single-level threshold
for j = 1:5
swc(j,:) = wthresh(swc(j,:),'h',ThreshSL(1));
end
% based on level-dependent thresholds
for j = 1:5
SWC(j,:) = wthresh(SWC(j,:),'h',ThreshML(j));
end
% Reconstruct
xSL = iswt(swc,'db1');
xML = iswt(SWC,'db1');
subplot(211)
plot(noisbloc); hold on;
plot(xSL,'r','linewidth',2);
title('Thresholding based on a single level');
subplot(212)
plot(noisbloc); hold on;
plot(xML,'r','linewidth',2);
title('Level dependent thresholds');
```

Denoise image using level-dependent thresholds with wdencmp.

```
load sinsin
x = X+18*randn(size(X));
[C,L] = wavedec2(x,2,'sym8');
THR = wthrmngr('dw2dcompLVL','scarcehi',C,L,2);
    Xd = wdencmp('lvd',X,'sym8',2,THR,'s');
image(X); title('Original image');
figure;
image(x); title('Noisy image');
figure;
image(Xd); title('Denoised image');
```


Purpose NTREE manager

Syntax

Description wtreemgr is a tree management utility.
This function returns information on the tree T depending on the value of the OPT parameter.
Allowed values for OPT are listed in the table below.

'allnodes'	Tree nodes
'isnode'	True for existing node
'istnode'	True for terminal nodes
'nodeasc'	Node ascendants
'nodedesc'	Node descendants
'nodepar'	Node parent
'ntnode'	Number of terminal nodes
'tnodes'	Terminal nodes
'leaves'	Terminal nodes
'noleaves'	Not terminal nodes
'order'	Tree order
'depth'	Tree depth

The functionality associated with the OPT value you specify is described in the functions listed in the "See Also" section.

See Also

```
allnodes | isnode | istnode | leaves | nodeasc | nodedesc |
nodepar | noleaves | ntnode | tnodes | treedpth | treeord
```


Purpose Find variance change points

```
Syntax
[PTS_OPT,KOPT,T_EST] = wvarchg(Y,K,D)
```

Description
[PTS_OPT, KOPT, T_EST] = wvarchg(Y, K, D) computes the estimated change points of the variance of signal Y for j change points, with $j=0$, $1,2, \ldots, \mathrm{~K}$.
Integer D is the minimum delay between two change points.
Integer KOPT is the proposed number of change points ($0 \leq K O P T \leq K$). The vector PTS_OPT contains the corresponding change points.

For $1 \leq k \leq K$, T_EST ($k+1,1: k$) contains the k instants of the variance change points and then, if KOPT > 0 , PTS_OPT $=$ T_EST (KOPT+1,1:KOPT) else PTS_OPT = [].
K and D must be integers such that $1<K \ll$ length (Y) and $1 \leq D \ll$ length(Y).
The signal Y should be zero mean.
wvarchg (Y, K) is equivalent to wvarchg $(\mathrm{Y}, \mathrm{K}, 10)$.
wvarchg (Y) is equivalent to wvarchg $(Y, 6,10)$.

Examples

Detect Variance Change Points

Add two variance change points to the blocks signal. Detect the variance change points using wvarchg.

Load the blocks signal. Add white noise with two variance change points located at index 180 and 600.

```
x = wnoise(1,10);
rng default;
bb = 1.5*randn(1,length(x));
cp1 = 180; cp2 = 600;
x = x + [bb(1:cp1),bb(cp1+1:cp2)/4,bb(cp2+1:end)];
```

Obtain the level-1 wavelet coefficients. Replace the top 2% of values with the mean value of the wavelet coefficients to remove all signal.

```
wname = 'db3'; lev = 1;
[c,l] = wavedec(x,lev,wname);
det = wrcoef('d',c,l,wname,1);
y = sort(abs(det));
v2p100 = y(fix(length(y)*0.98));
ind = find(abs(det)>v2p100);
det(ind) = mean(det);
```

Estimate the variance change points using the wavelet coefficients.
[pts_Opt,kopt,t_est] = wvarchg(det,5);
sprintf('The estimated change points are \%d and \%d\n',pts_Opt)

References Lavielle, M. (1999), "Detection of multiple changes in a sequence of dependent variables," Stoch. Proc. and their Applications, 83, 2, pp. 79-102.

[^0]: \% Change Node Label from Depth_Position to Index \% (see the plot function).

[^1]: \% Compute best tree.
 bt = besttree(wpt);
 \% Plot best tree bt. plot(bt)

[^2]: References
 Donoho, D.L. (1995), "De-noising by soft-thresholding," IEEE, Trans. on Inf. Theory, 41, 3, pp. 613-627.

[^3]: See Also
 dwt3 | wavedec3 | waverec3

[^4]: \% Change Node Label from Depth_Position to Inde

[^5]: \% Change Node Label from Depth_Position to Index \% (see the plot function).

[^6]: \% Change Node Label from Depth_Position to Index \% (see the plot function).

[^7]: References Nason, G.P.; B.W. Silverman (1995), "The stationary wavelet transform and some statistical applications," Lecture Notes in Statistics, 103, pp. 281-299.

 Coifman, R.R.; Donoho, D.L. (1995), "Translation invariant de-noising," Lecture Notes in Statistics, 103, pp. 125-150.

 Pesquet, J.C.; H. Krim, H. Carfatan (1996), "Time-invariant orthonormal wavelet representations," IEEE Trans. Sign. Proc., vol. 44, 8, pp. 1964-1970.

 See Also
dwt | wavedec

[^8]: References Nason, G.P.; B.W. Silverman (1995), "The stationary wavelet transform and some statistical applications," Lecture Notes in Statistics, 103, pp. 281-299.

 Coifman, R.R.; Donoho, D.L. (1995), "Translation invariant de-noising," Lecture Notes in Statistics, 103, pp. 125-150.

 Pesquet, J.C.; H. Krim, H. Carfatan (1996), "Time-invariant orthonormal wavelet representations," IEEE Trans. Sign. Proc., vol. 44, 8, pp. 1964-1970.

 ## See Also
 dwt2 | iswt2 | wavedec2

[^9]: References Daubechies, I., Ten lectures on wavelets, CBMS, SIAM, 1992, pp. 202Äì213.

[^10]: See Also imread | imwrite | wmaxlev

[^11]: References Strang, G.; T. Nguyen (1996), Wavelets and filter banks, WellesleyCambridge Press.

[^12]: \% Compute wavelet tree.
 wt = wp2wtree(wpt);

[^13]: See Also wpdec | wpdec2 | wprec | wprec2
 How To

 - "Reconstructing a Signal Approximation from a Node"

[^14]: See Also wavedec2 | wthresh

